• Title/Summary/Keyword: loading system

Search Result 3,332, Processing Time 0.026 seconds

Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation (유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이)

  • Kim Yeon-Sil;Kim Sung-Whan;Yoon Sel-Chul;Lee Jung-Seok;Son Seok-Hyun;Choi Ihl-Bong
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.

The Relation Between Work-Related Musculoskeletal Symptoms and Rapid Upper Limb Assessment(RULA) among Vehicle Assembly Workers (자동차 조립 작업자들에서 상지 근골격계의 인간공학적 작업평가(Rapid Upper Limb Assessment) 결과와 자각증상과의 연관성)

  • Kim, Jae-Young;Kim, Hae-Joon;Choi, Jae-Wook
    • Journal of Preventive Medicine and Public Health
    • /
    • v.32 no.1
    • /
    • pp.48-59
    • /
    • 1999
  • Objectives. This study was conducted to evaluate the association between upper extremity musculoskeletal symptoms and Rapid Upper Limb Assessment(RULA) in vehicle assembly line workers. The goal of this study is to show the feasibility of RULA as a checklist for work related musculoskeletal symptoms (WMSDs) in Korean workers. Methods. The total number of 199 people from the department of assembly and 115 people from the department of Quality Control(QC) in automotive plant were subjects for this cross sectional study. A standard symptom questionnaire survey has been used for the individual characteristics, work history, musculosketal symptoms and non-occupational covariates. The data were obtained by applying one-on-one interview for the all subjects. RULA has been applied for ergonomic work posture analysis and the primary ergonomic risk sure was computed by RULA method. Association between upper extremity musculoskeletal symptoms and RULA were assessed by multiple logistic regression analysis. Results. A total of 314 workers was examined. The prevalence of musculoskeletal symptoms by NIOSH case definition was 62.4%. The distribution of musculoskeletal symptoms by the part of the body turned out to be following; back:41.4%, neck: 32.8%, shoulder: 26.4%, arm: 10.5% and hand:29.3%. The relationship of the individual RULA scores were statistically significant for the prevalence of musculoskeletal symptoms. As the result of the multiple logistic regressioin analysis, grand final score (OR=2.250 95% CI: 1.402-3.612) was associated with musculoskeletal symptoms in any part of the body.; upper arm score(OR=1.786 95% CI: 1.036-3.079) and posture score A(OR=1.634 95% CI: 1.016-2.626) in neck; muscel use score(OR=3.076 95% CI:1.782-5.310) and posture score A(OR=1.798 95% CI: 1.072-3.017) in shoulder; upper arm score(OR=1.715 95% CI: 1.083-2.715) and muscel use score(OR=2.057 95% CI:1.303-3.248) in neck & shoulder; muscle use score(OR=10.662 95% CI: 3.180-35.742) in arm; writst/wist score(OR=2.068 95% CI: 1.130-3.786) and muscle use score(OR=2.215 95% CI: 1.284-3.819) in hand & wrist.; muscle use score of trunk (OR=2.601 95% CI: 1.147-5.901) in back. Conclusions. Musculoskeletal symptoms of the extremities were strongly associated with individual RULA body score. These results show that RULA can be used as a useful assessment tool for the evaluation of musculoskeletal loading which is known to contribute to work-related musculoskeletal disorders. RULA also can be used as a screening tool or incorporated into a wider ergonomic assessment of epidemiological, physical, mental, environmental and organizational factors. As shown in this study, complement of the analysis system for the other risk factors and characterizing between the upper limb and back part will be needed for future work.

  • PDF