• Title/Summary/Keyword: loading scheme

Search Result 291, Processing Time 0.025 seconds

Optimum distribution of steel slit-friction hybrid dampers based on life cycle cost

  • Eldin, Mohamed Nour;Kim, Jaegoo;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.27 no.5
    • /
    • pp.633-646
    • /
    • 2018
  • This study investigated the seismic performance of a hybrid damper composed of a steel slit plate and friction pads, and an optimum retrofit scheme was developed based on life cycle cost. A sample hybrid damper was tested under cyclic loading to confirm its validity as a damping device and to construct its nonlinear analysis model. The effectiveness of the optimum damper distribution schemes was investigated by comparing the seismic fragility and the life cycle costs of the model structure before and after the retrofit. The test results showed that the damper behaved stably throughout the loading history. Numerical analysis results showed that the slit-friction hybrid dampers optimally distributed based on life cycle cost proved to be effective in minimizing the failure probability and the repair cost after earthquakes.

Fatigue Failure Analysis of Plates under Multi-axial Loading (다축응력상태 평판의 피로파괴 해석)

  • 이상호;윤영철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.321-326
    • /
    • 1999
  • In this study, fatigue crack propagation problem of plate under multi-axial loading is mainly considered To analyze this special problem, recently developed technique called EFGM(Element-Free Galerkin Method), one of the Meshfree Methods, and general fatigue crack growth raw herein Paris law are used Using the Implemented scheme, paths of fatigue cracks by constant-amplitude load fluctuation and multiple-crack growth behavior are examined. The failure mechanism of steel plate due to crack propagation is studied. As a result, an algorithm that treats multiple fatigue crack problems is proposed. A numerical example shows that the prediction of growing paths can be achieved successfully and efficiently by proposed algorithm.

  • PDF

Development of finite element model using incremental endochronic theory for temperature sensitive material

  • Kerh, Tienfuan;Lin, Y.C.
    • Structural Engineering and Mechanics
    • /
    • v.16 no.2
    • /
    • pp.115-126
    • /
    • 2003
  • A novel finite element model based on the incremental endochronic theory with the effect of temperature was developed in this study to explore the deformed behaviors of a flexible pavement material. Three mesh systems and two loading steps were used in the calculation process for a specimen of three-dimensional circular cylinder. Computational results in the case of an uni-axial compression test for temperatures at $20^{\circ}C$ and at $40^{\circ}C$ were compared with available experimental measurements to verify the ability of developing numerical scheme. The isotropic response and the deviatoric response due to the thermal effect were presented from deformations in different profiles and displacement plots for the entire specimen. The characteristics of changing asphalt concrete material under a specified loading condition might be seen clearly from the numerical results, and might provide an useful information in the field of road engineering.

Evaluation of Damage Index for Reinforced Concrete Column according to Lap-splice, Number of Cycle, Axial Load and Confinement steel Ratio (철근콘크리트 교각의 겹침이음, 하중재하 횟수, 축하중비 및 구속철근비에 따른 손상도 평가)

  • 이대형;정영수;박창규
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.271-279
    • /
    • 2003
  • The objective of this study is to evaluate the damage of the reinforced concrete bridge piers. For the purpose of this research, twelve reinforced concrete specimens were fabricated and experimented with quasi-static test method. The selected test parameters are lap splice, axial load ratio, confinement steel ratio and number of loading cycle. The method of evaluate of damage index is the model proposed by Park and Ang. In accordance with this research, the most effective test parameter is lap splice of longitudinal steel. Therefore, the retrofit scheme of reinforced concrete bridge piers with lap splice of longitudinal steel, which was constructed before 1992, must be settled without delay. Otherwise, the effect of axial force is trivial. The more confinement steel is less damage index and more loading cycle lead to raise damage. The damage statement proposed Park and Ang is the same with experimental results.

  • PDF

CFI Approach to Defend against GOT Overwrite Attacks (CFI(Control Flow Integrity) 적용을 통한 GOT(Global Offset Table) 변조 공격 방지 방안 연구)

  • Jeong, Seunghoon;Hwang, Jaejoon;Kwon, Hyukjin;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.21 no.1
    • /
    • pp.179-190
    • /
    • 2020
  • In the Unix-like system environment, the GOT overwrite attack is one of the traditional control flow hijacking techniques for exploiting software privileges. Several techniques have been proposed to defend against the GOT overwrite attack, and among them, the Full Relro(Relocation Read only) technique, which blocks GOT overwrites at runtime by arranging the GOT section as read-only in the program startup, has been known as the most effective defense technique. However, it entails loading delay, which limits its application to a program sensitive to startup performance, and it is not currently applied to the library due to problems including a chain loading delay problem caused by nested library dependency. Also, many compilers, including LLVM, do not apply the Full Relro technique by default, so runtime programs are still vulnerable to GOT attacks. In this paper, we propose a GOT protection scheme using the Control Flow Integrity(CFI) technique, which is currently recognized as the most suitable technique for defense against code reuse attacks. We implemented this scheme based on LLVM and applied it to the binutils-gdb program group to evaluate security, performance and compatibility. The GOT protection scheme with CFI is difficult to bypass, fast, and compatible with existing library programs.

Assessment of Rotor Hover Performance Using a Node-based Flow Solver

  • Jung, Mun-Seung;Kwon, Oh-Joon;Kang, Hee-Jung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.2
    • /
    • pp.44-53
    • /
    • 2007
  • A three-dimensional viscous flow solver has been developed for the prediction of the aerodynamic performance of hovering helicopter rotor blades using unstructured hybrid meshes. The flow solver utilized a vertex-centered finite-volume scheme that is based on the Roe's flux-difference splitting with an implicit Jacobi/Gauss-Seidel time integration. The eddy viscosity are estimated by the Spalart- Allmaras one-equation turbulence model. Calculations were performed at three operating conditions with varying tip Mach number and collective pitch setting for the Caradonna-Tung rotor in hover. Additional computations are made for the UH-60A rotor in hover. Reasonable agreements were obtained between the present results and the experiment in both blade loading and overall rotor performance. It was demonstrated that the present vertex-centered flow solver is an efficient and accurate tool for the assessment of rotor performance in hover.

A Classification Study on Logistics Equipments and Their Attributes (물류설비 및 속성 분류체계 연구)

  • Chang, Tai-Woo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.1
    • /
    • pp.175-182
    • /
    • 2009
  • Needs on ensuring compatibility and conformity of equipments that are used in logistics functions - such as packaging, transporting, loading/unloading and storing - are raised. This article presents a classification scheme for analyzing the interfacing characteristics of logistics equipments focusing on standardized pallets of unit load system. International and domestic classification systems are reviewed and analyzed; as a result several problems are issued. Methods to resolve the problems, to specify the attributes of logistics equipments and to represent the semantics among them using semantic web technology are proposed. This study could make it possible to examine the conformities of interfacing equipments automatically.

Prediction of Ductile Fracture in Metal Forming Processes (금속성형공정에서 연성파괴예측)

  • 고대철;이진희;김병민;최재찬
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.167-177
    • /
    • 1994
  • Most of bulk metal forming processes may be limited by ductile fracture such as surface or internal cracks developing in the workpiece. It is important to identify the conditions within the deforming workpiece which may lead to fracture, and then it is possible to modify the forming processes to produce sound and reliable product. This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and analysis of deformation in metal forming processes. The Cockcroft-Latham criterion which is successfully applied to a variety of loading situations is used in the present investigation to estimate whether fracture occurs during the deformation process. The numerical predictions and experimental results of two types of metal forming process are compared, axisymmetric extrusion and simple upsetting. The proposed scheme has successfully predicted the fracture initiation found experimentally.

  • PDF

Effects of Matrix Ductility on the Shear Performance of Precast Reinforced HPFRCC Coupling Beams

  • Yun Hyun-Do;Kim Sun-Woo;Jeon Esther;Park Wan Shin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.53-56
    • /
    • 2005
  • This paper investigates the effect of ductile deformation behavior of high performance hybrid fiber-reinforced cement composites (HPHFRCCs) on the shear behavior of coupling beams to lateral load reversals. The matrix ductility and the reinforcement layout were the main variables of the tests. Three short coupling beams with two different reinforcement arrangements and matrixes were tested. They were subjected to cyclic loading by a suitable experimental setup. All specimens were characterized by a shear span-depth ratio of 1.0. The reinforcement layouts consisted of a classical scheme and diagonal scheme without confining ties. The effects of matrix ductility on deflections, strains, crack widths, crack patterns, failure modes, and ultimate shear load of coupling beams have been examined. The combination of a ductile cementitious matrix and steel reinforcement is found to result in improved energy dissipation capacity, simplification of reinforcement details, and damage-tolerant inelastic deformation behavior. Test results showed that the HPFRCC coupling beams behaved better than normal reinforced concrete control beams. These results were produced by HPHFRCC's tensile deformation capacity, damage tolerance and tensile strength.

  • PDF

Strengthening method using externally-bonded steel frames for promoting the seismic performance of existing buildings (기존 건축물 내진성능 향상을 위한 철골 골조 외부부착 보강공법)

  • Mauk, Ji-Wook;Park, Young-Mi;Park, Ki-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.11a
    • /
    • pp.98-99
    • /
    • 2018
  • Seismic retrofitting technologies have been paid attention to structural engineers for rehabilitations of existing building structures vulnerable to seismic loading conditions. This paper introduces the traditional strengtheing method applying externally-bonded steel frames to column and beam elements, and compares with the improved scheme using the frames with additional energy dissipation systems. Throughout experimental studies, it was observed that the method can be effective for promoting the seismic performance of seismic force-resisting systems by guaranteeing strong column-weak beam mechanism. Compared to the traditional manner, it was found that the new scheme can be more efficient for confirming capacity design concept, while energy dissipation systems can provide additional damping effects corresponding to lateral deformation which occurs at seismic force-resisting systems exposed to seismic excitations.

  • PDF