• Title/Summary/Keyword: loading rate effect

Search Result 544, Processing Time 0.028 seconds

Effect of different tungsten compound reinforcements on the electromagnetic radiation shielding properties of neopentyl glycol polyester

  • Can, Omer;Belgin, Ezgi Eren;Aycik, Gul Asiye
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1642-1651
    • /
    • 2021
  • In this study, isophtalic neopentyl glycol polyester (NPG-PES) based composites with different loading ratios of pure tungsten metal (W), tungsten (VI) oxide (WO3), tungsten boron (WB) and tungsten carbide (WC) composites were prepared as alternative shielding materials for ionizing electromagnetic radiation (IEMR) shielding. Structural characterizations of the composites were done. Gamma spectrometric analysis of composites for 80-2000 keV energy range was performed and their usability as IEMR shielding was discussed. As a result, the produced composites showed a shielding performance of 60-100% of the lead (the most widely used IEMR shielding material) depending on the reinforcement material, reinforcement loading rate and experimental conditions. Thus, it was reported that produced composites could be an alternative to lead shieldings that have several disadvantages as toxic properties, difficulty of processing and inelasticity.

High Temperature Gas Leak Behavior of Glass-Ceramic Fiber Composite Seals for SOFC Applications (SOFC용 유리-세라믹섬유 복합기밀재의 고온 기체누설 거동)

  • Lee, Jae-Chun;Kwon, Hyuk-Chon;Kwon, Young-Pil;Park, Sung;Jang, Jin-Sik;Lee, Jongho;Kim, Joosun;Lee, Hae-Won
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.12 s.283
    • /
    • pp.842-845
    • /
    • 2005
  • Glass composites containing ceramic fiber have been developed for Solid Oxide Fuel Cell (SOFC) seals. Effect of glass type, loading pressure and thermal cycle the leak rates of composite seals was investigated. Seal performance of two commercial glasses was compared with that of $SiO_2BaO-B_2O_3$ glass synthesized in this work. The leak rate for seals made of pyrex(R) increases from $\~0.0005\;to\;\~0.004sccm/cm$ as the gas pressure increases from 10 to 50 kPa. The soda lime silicate glass seal shows the leak rate two times higher than the one made of pyrex(R) or $SiO_2BaO-B_2O_3$ glass. The viscosity of glass at the seal test temperature is presumed to affect the leak rate of the glass seal. As the applied loading pressure increases from 0.4 to 0.8 MPa at $750^{\circ}C$, the leak rate decreases from 0.038 to 0.024 sccm/cm for composite seals. It has been found that during 50 thermal cycles between $450^{\circ}C\;to\;700^{\circ}C$ leak rates remained almost constant, ranging from 0.025 to 0.03sccm/cm. The results showed an excellent thermal cycle stability as well as sealability of the glass matrix ceramic fiber composite seals.

A Study on the Ultrasonic In-Process Dressing Method of CBN Grinding Wheel (CBN 연삭숫돌의 초음파 인프로세스 드레싱 기법)

  • 이석우;정해도;최헌종
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.43-50
    • /
    • 2000
  • A CBN wheel was used for the highly efficient and precision grinding of the mold material(STD11). The grinding form accuracy by a CBN wheel is very excellent due to its low wheel wear, but grinding fragments resemble fine powders rather chips. A fine powders by this fragmentation can easily get attached to the wheel surface and therefore causing a loading. In order to prevent this fragmentation phenomena, the alumina stick is use to processing. Because the dressing with alumina stick should be interrupted for a processing, the automation of the processing and high productivity was very difficult. The investigation on the effect of Ultrasonic In-Process Dressing(ULID) on the grinding characteristics focuses in this Paper. This ULID method is that ultrasonic vibration in my Position of wheel is used to remove impurities on the wheel surface. Finally, the rate of surface roughness change in grinding by the ULID method was less than grinding without ultrasonic vibration. Loading phenomena by the ULID method were more prevented than grinding without ultrasonic vibration.

  • PDF

Low cycle fatigue and ratcheting failure behavior of AH32 steel under uniaxial cyclic loading

  • Dong, Qin;Yang, Ping;Xu, Geng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.671-678
    • /
    • 2019
  • In this paper, the low cycle fatigue failure and ratcheting behavior, as well as their interaction of AH32 steel were experimentally investigated under uniaxial cyclic loading. The effects of mean stress, stress amplitude and stress ratio on the low cycle fatigue life and ratcheting strain were discussed. It was found that the ratcheting strain increased while the fatigue life decreased with the increase of mean stress and stress amplitude, and the increasing stress ratio would result in smaller ratcheting and larger fatigue life. Two kinds of failure modes, i.e. low cycle fatigue failure due to crack propagates and ratcheting failure due to large plastic strain will take place respectively. Based on the experimental results, considered the effect of ratcheting on fatigue life, a model with the maximum stress and ratcheting strain rate was proposed. Comparison with the experimental result showed that the new model provided a good prediction for AH32 steel.

Mechanical Properties of the Apple Flesh According to the Specimen Size

  • Kim, M.S.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.43-48
    • /
    • 2000
  • Mechanical properties of the apple flesh were tested with compression test apparatus constructed by this study. The computer program was developed for measuring mechanical properties, and analyzing data obtained from the study. Compression tests on the apple flesh were performed at four levels of specimen diameter, three levels of specimen length, and at constant loading rate(25mm/min). Five replications were made at each treatment combination. Effect of specimen size on the mechanical properties of the apple flesh was investigated.

  • PDF

Analysis of Microscopic Plastic Behaviors of metals considering slip deformation of crystals(I) (결정의 슬립을 고려한 금속의 미시적 소성변형거동 해석(I))

  • 김정석;정기조;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.55-61
    • /
    • 1996
  • Finite element calculations are performed for crystalline solids subjected to plane strain tensile loading. Using Asaro's double slop model, shearband developments in single crystals are analyzed. The effect of various rate sensitivities and latent hardening parameters on microscopic plastic behavior was clarified. Moreover the deformation behavior of polycystals which have grain boundaries was compared to that of single crystals.

  • PDF

Narrow-diameter implants with conical connection for restoring the posterior edentulous region

  • Woo, In-Hee;Kim, Ju-Won;Kang, So-Young;Kim, Young-Hee;Yang, Byoung-Eun
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.38
    • /
    • pp.31.1-31.7
    • /
    • 2016
  • Background: The objective of this retrospective study was to show results from platform-switched narrow-diameter implants in the posterior edentulous region, which we followed up for more than 1 year after functional loading. Methods: Ninety-eight narrow implants were inserted into 66 patients. After healing, fixed implant-supported prostheses were delivered to the patients, and Periotest and radiographic examinations were performed. After the first year of loading, the implant outcome was again evaluated clinically and radiographically using the Periotest analysis. Crestal bone loss and Periotest values (PTVs) were used to evaluate the effect of surgery, prosthesis, implant, and a host-related factor. A general linear model was used to statistically detect variables statistically associated with crestal bone loss and Periotest value. Results: We followed up on the implants over 1 to 4 years after loading; their survival rate was 100 %, and pronounced differences from PTVs were noted among jaw location, bone quality, and loading period. No difference was detected in bone loss among the variables studied. Bone loss after functional loading was $0.14{\pm}0.39mm$. The stability value from the Periotest was $-3.29{\pm}0.50$. Conclusions: Within the limitations of this study, judicious use of platform-switched narrow implants with a conical connection must be considered an alternative for wide-diameter implants to restore a posterior edentulous region.

Differences on Tension, Compression JC Constitutive Equation Parameter of Strain Rate Effect for Ti-6Al-4V (Ti-6Al-4V 변형률 속도 변화에 따른 인장, 압축형 JC 구성방정식 변수의 변화)

  • Woo, Sang-Hyun;Lee, Chang-Soo;Park, Lee-Ju
    • Korean Journal of Materials Research
    • /
    • v.27 no.1
    • /
    • pp.19-24
    • /
    • 2017
  • This paper is concerned with a test method that can be used to investigate the parameters of the Johnson-Cook constitutive model. These parameters are essential for accurately analyzing material behavior under impact loading conditions in numerical simulation. Ti-6Al-4V alloy (HCP crytal structure) was used as a specimen for the experiments. In the $10^{-3}-10^3/s$ strain rate range, three types of experimental methods (convention, compression and tension) were employed to compare the differences using MTS-810, SHPB and SHTB. Finite element analysis results when applying these parameters were displayed along with the experiment results.

Effect of Heat Treatment and Platinum Loading on CdS Particles in the Photocatalytic Alanine Synthesis

  • Lee, Bu-Yong;Kim, Bong-Gon;Cho, Cheol-Rae;Sakada, Tadayoshi
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.6
    • /
    • pp.700-704
    • /
    • 1993
  • The photocatalytic alanine and hydrogen production reaction were studied by using CdS as a semiconductor photocatalysts. The rate of alanine and hydrogen production depends strongly on the temperature in heat treatment of CdS powder. In particular, the rate of alanine production, which was observed using Pt/CdS(A)-(CdS from Mitsuwa), was increased about six times than that of using Pt/CdS(B)-(CdS from Furruchi) under the same heat treatment condition at 500$^{\circ}$C. And the photocatalytic activity for alanine production using bare CdS(A) or Pt/CdS(A) was almost same with increasing temperature in heat treatment in the range of 100-600$^{\circ}$C. From X-ray diffraction data and photoluminescence spectrum, we conclude that the crystal structure changes of CdS(A) or strong interaction at interface of Pt and CdS contribute to increasing the rate of alanine and hydrogen production reaction.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.