• 제목/요약/키워드: loading level

검색결과 1,190건 처리시간 0.028초

Statistical damage classification method based on wavelet packet analysis

  • Law, S.S.;Zhu, X.Q.;Tian, Y.J.;Li, X.Y.;Wu, S.Q.
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.459-486
    • /
    • 2013
  • A novel damage classification method based on wavelet packet transform and statistical analysis is developed in this study for structural health monitoring. The response signal of a structure under an impact load is normalized and then decomposed into wavelet packet components. Energies of these wavelet packet components are then calculated to obtain the energy distribution. Statistical similarity comparison based on an F-test is used to classify the structure from changes in the wavelet packet energy distribution. A statistical indicator is developed to describe the damage extent of the structure. This approach is applied to the test results from simply supported reinforced concrete beams in the laboratory. Cases with single and two damages are created from static loading, and accelerations of the structure from under impact loads are analyzed. Results show that the method can be used with no reference baseline measurement and model for the damage monitoring and assessment of the structure with alarms at a specified significance level.

Modelling of strains in reinforced concrete flexural members using alpha-stable distribution

  • Rao, K. Balaji;Anoop, M.B.;Kesavan, K.;Balasubramanian, S.R.;Ravisankar, K.;Iyer, Nagesh R.
    • Computers and Concrete
    • /
    • 제11권5호
    • /
    • pp.411-440
    • /
    • 2013
  • Large fluctuations in surface strain at the level of steel are expected in reinforced concrete flexural members at a given stage of loading due to the emergent structure (emergence of new crack patterns). This has been identified in developing deterministic constitutive models for finite element applications in Ibrahimbegovic et al. (2010). The aim of this paper is to identify a suitable probability distribution for describing the large deviations at far from equilibrium points due to emergent structures, based on phenomenological, thermodynamic and statistical considerations. Motivated by the investigations reported by Prigogine (1978) and Rubi (2008), distributions with heavy tails (namely, alpha-stable distributions) are proposed for modeling the variations in strain in reinforced concrete flexural members to account for the large fluctuations. The applicability of alpha-stable distributions at or in the neighborhood of far from equilibrium points is examined based on the results obtained from carefully planned experimental investigations, on seven reinforced concrete flexural members. It is found that alpha-stable distribution performs better than normal distribution for modeling the observed surface strains in reinforced concrete flexural members at these points.

Experimental investigation of a new steel friction device with link element for seismic strengthening of structures

  • Papadopoulos, Panikos K.;Salonikios, Thomas N.;Dimitrakis, Stergios A.;Papadopoulos, Alkis P.
    • Structural Engineering and Mechanics
    • /
    • 제46권4호
    • /
    • pp.487-504
    • /
    • 2013
  • In the present work a new friction device, with a set of single or double rotational friction flanges and a link element, is described and tested. The mechanism may be applied for the strengthening of existing r/c or steel buildings as well as in new constructed buildings. The device has selectable variable behavior in different levels of displacement and an interlock mechanism that is provided by the link element. The link element may be designed to lock at preselected level of displacement, offering in this way an extra safety reserve against strong earthquakes. A summary of the existing literature about other similar mechanisms is initially presented in this paper. The proposed mechanism is presented and described in details. Laboratory experiments are presented in detail and the resulted response that proves the efficiency of the mechanism at selectable levels of strength capacity is discussed. Drawings of the mechanism attached to a r/c frame with connection details are also included. Finally a dynamic analysis of two r/c frames, with and without the proposed mechanism attached, is performed and the resulted response is given. The main conclusion is that the proposed mechanism is a cheap and efficient devise for the improvement of the performance of new or existing framed buildings to seismic loads.

CONTAINMENT PERFORMANCE EVALUATION OF PRESTRESSED CONCRETE CONTAINMENT VESSELS WITH FIBER REINFORCEMENT

  • CHOUN, YOUNG-SUN;PARK, HYUNG-KUI
    • Nuclear Engineering and Technology
    • /
    • 제47권7호
    • /
    • pp.884-894
    • /
    • 2015
  • Background: Fibers in concrete resist the growth of cracks and enhance the postcracking behavior of structures. The addition of fibers into a conventional reinforced concrete can improve the structural and functional performance of safety-related concrete structures in nuclear power plants. Methods: The influence of fibers on the ultimate internal pressure capacity of a prestressed concrete containment vessel (PCCV) was investigated through a comparison of the ultimate pressure capacities between conventional and fiber-reinforced PCCVs. Steel and polyamide fibers were used. The tension behaviors of conventional concrete and fiber-reinforced concrete specimens were investigated through uniaxial tension tests and their tension-stiffening models were obtained. Results: For a PCCV reinforced with 1% volume hooked-end steel fiber, the ultimate pressure capacity increased by approximately 12% in comparison with that for a conventional PCCV. For a PCCV reinforced with 1.5% volume polyamide fiber, an increase of approximately 3% was estimated for the ultimate pressure capacity. Conclusion: The ultimate pressure capacity can be greatly improved by introducing steel and polyamide fibers in a conventional reinforced concrete. Steel fibers are more effective at enhancing the containment performance of a PCCV than polyamide fibers. The fiber reinforcementwas shown to bemore effective at a high pressure loading and a lowprestress level.

Comparative performance of seismically deficient exterior beam-column sub-assemblages of different design evolutions: A closer perspective

  • Kanchana Devi, A.;Ramanjaneyulu, K.
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.177-191
    • /
    • 2017
  • In the present study, exterior beam column sub-assemblages are designed in accordance with the codal stipulations prevailed at different times prior to the introduction of modern seismic provisions, viz., i) Gravity load designed with straight bar anchorage (SP1), ii) Gravity load designed with compression anchorage (SP1-D), iii) designed for seismic load but not detailed for ductility (SP2), and iv) designed for seismic load and detailed for ductility (SP3). Comparative seismic performance of these exterior beam-column sub-assemblages are evaluated through experimental investigations carried out under repeated reverse cyclic loading. Seismic performance parameters like load-displacement hysteresis behavior, energy dissipation, strength and stiffness degradation, and joint shear deformation of the specimens are evaluated. It is found from the experimental studies that with the evolution of the design methods, from gravity load designed to non-ductile and then to ductile detailed specimens, a marked improvement in damage resilience is observed. The gravity load designed specimens SP1 and SP1-D respectively dissipated only one-tenth and one-sixth of the energy dissipated by SP3. The specimen SP3 showcased tremendous improvement in the energy dissipation capacity of nearly 2.56 times that of SP2. Irrespective of the level of design and detailing, energy dissipation is finally manifested through the damage in the joint region. The present study underlines the seismic deficiency of beam-column sub-assemblages of different design evolutions and highlights the need for their strengthening/retrofit to make them fit for seismic event.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

Behaviour of high strength concrete-filled short steel tubes under sustained loading

  • Younas, Saad;Li, Dongxu;Hamed, Ehab;Uy, Brian
    • Steel and Composite Structures
    • /
    • 제39권2호
    • /
    • pp.159-170
    • /
    • 2021
  • Concrete filled steel tubes (CFSTs) are extensively used in a variety of structures due to their structural and economic advantages over other types of structures. Considerable research has been conducted with regards to their short-term behaviour, and very limited studies have focused on their long-term behaviour. In this study, a series of tests were carried out on high strength squat (short) CFSTs and concrete cylinders under controlled conditions of temperature and humidity to better understand their time dependent behaviour. A number of parameters were investigated including the influence of steel and concrete bond, confinement, level of sustained load and sizes of specimens. The results revealed that creep strains increased by more than 40% if there was no bonding between steel tube and concrete core. As expected, creep and shrinkage of concrete inside a steel tube were significantly less than those developed in exposed concrete. At the end of a creep period of six months, all the specimens were tested to failure to observe the influence of sustained loads on the ultimate strength. It was found that creep does not have a major effect on the strength of short CFSTs in the specific experimental study conducted here, which was less than 2.5%.

클라우드 분산 파일 시스템 성능 개선 및 평가 (Performance Enhancement and Evaluation of Distributed File System for Cloud)

  • 이종혁
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제7권11호
    • /
    • pp.275-280
    • /
    • 2018
  • 클라우드 환경에서 빅데이터 적재와 이후 애플리케이션을 통한 고속 처리를 위해서는 적합한 분산 파일 시스템의 선택이 요구된다. 본 논문에서는 GlusterFS 기반 쓰기 성능 향상 방법을 제안하고 클라우드 환경에서 기존 분산 파일 시스템 중 MapRFS, CephFS, GlusterFS와 성능을 비교 평가한다. 본 논문에서 제안한 쓰기 성능 향상 방법은 동기식 스토리지 복제 방식에서 사용하는 동기화 수준을 디스크에서 메모리로 변경함으로써 응답 시간을 향상 시킨다. 실험 결과는 본 논문의 제안 방법이 적용된 분산 파일 시스템이 순차 쓰기의 경우와 랜덤 쓰기와 랜덤 읽기가 혼합된 경우에서 다른 분산 파일 시스템 대비 성능이 우수함을 보인다.

Performance evaluation of in-service open web girder steel railway bridge through full scale experimental investigations

  • Sundaram, B. Arun;Kesavan, K.;Parivallal, S.
    • Structural Monitoring and Maintenance
    • /
    • 제6권3호
    • /
    • pp.255-268
    • /
    • 2019
  • Civil infrastructures, such as bridges and tunnels are most important assets and their failure during service will have significant economic and social impact in any country. Behavior of a bridge can be evaluated only through actual monitoring/measurements of bridge members under the loads of interest. Theoretical analysis alone is not a good predictor of the ability of a bridge. In some cases, theoretical analyses can give less effect than actual since theoretical analyses do not consider the actual condition of the bridge, support conditions, level of corrosion and damage in members and connections etc. Hence actual measurements of bridge response should be considered in making decisions on structural integrity, especially in cases of high value bridges (large spans and major crossings). This paper describes in detail the experimental investigations carried out on an open web type steel railway bridge. Strain gages and displacement transducers were installed at critical locations and responses were measured during passage of locomotives. Stresses were evaluated and extrapolated to maximum design loading. The responses measured from the bridge were within the permissible limits. The methodology adopted shall be used for assessing the structural integrity of the bridge for the design loads.

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.