• Title/Summary/Keyword: loading level

Search Result 1,190, Processing Time 0.03 seconds

TIME-DEPENDENT DEFORMATION OF POLYMER-BASED PROVISIONAL CROWN AND FIXED PARTIAL DENTURE MATERIALS

  • Pae Ahran;Jeong Mi-Sook;Kim Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.717-726
    • /
    • 2005
  • Statement of problem. One of the common problems of provisional crown and fixed partial denture materials is that when they are subjected to constant loads for a long period of time, they exhibit a dimensional change (creep). Purpose. The aim of this study was to investigate the viscoelastic behaviour of polymer-based provisional crown and fixed partial denture materials with time at constant compressive load. Material and methods. Three dimethacrylate-based materials (Protemp 3 Garant, Temphase, Luxatemp) and one monomethacrylate-based material (Trim) were selected. Dimensional changes of the specimens were recorded by a LVDT to evaluate their viscoelastic behavior and creep strain. For all specimens, two loading procedures were used. At first, static compressive stress of 4 MPa was applied for 30 minutes and followed by 1 hour of strain recovery. Then, after 24 hours of water storage, the specimens were loaded again. The creep values between materials were statistically analyzed using one-way ANOVA and multiple comparison $Scheff\acute{e}$ test. Independent samples t-test was also used to identify the difference of creep strain between first and secondary loading conditions at the significance level of 0.05. Results. Following application of the first loading, Trim showed the highest maximum creep strain (32.7%) followed by Luxatemp, Protemp 3 Garant and Temphase, with values of 3.78%, 2.86% and 1.77%, respectively. Trim was significantly different from other materials (P<0.05), while there were no significant differences among Luxatemp, Protemp 3 Garant and Temphase (P>0.05). The highest recovery and permanent set of Trim, were significantly different from those of others (P<0.05). At the secondary loading of the dimethacrylate-based materials, creep deformation, recovery and permanent set decreased and the percentage of recovery increased, while in Trim, all values of the measurements increased. This result showed that the secondary loading at 24 hours produced a significant creep magnitude. Conclusion. The dimethacrylate-based provisional crown and fixed partial denture materials showed significantly higher creep resistance and lower deformation than the monomethacrylate-based material. Thus, monomethacrylate-based materials should not be used in long-term stress-bearing situations.

Effect of Organic Loading Rate and Hydralic Retention Time on the Volatile Fatty Acid Production in 2- Step Anaerobic Fermentation System of Swine Wastes (돈분의 2단계 혐기발효시 산생성 단계에서의 유기물 부하율과 체류시간에 따른 휘발성지방산의 생산량)

  • 김범석;이상락;맹원재
    • Journal of Animal Environmental Science
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1998
  • It is known that the anaerobic fermentation of organic matter (OM) is divided into 2 phases, acidogenic phase in which OM is digested into volatile fatty acid (VFA), and methanogenic phase where the produced VFA is converted to CH4 and CO2. In a natural fermenting procedure, these 2 phases occur at the same time. However the total production of end products (methane) may be limited if these 2 phases occur at the same time. This is believed to be due to the difference in growth rate, substrate-utilizing efficiency and favorable environment for each microbes (acidogens and methanogens), involved in each phase. It is therefore suggested for the maximum recycling of organic waste (such as animal waste) through providing 2 different steps in fermenting procedure, acidogenic phase and methanogenic phase, in each case the activity of involved microbes can be maintained at the maximum level. The results obtained from these experiments are summarized as follows : The loading rates of swine waste were made through 2.5, 5 and 10 gVS / l / d to identify its acidogenic fermenting character in this study. The VFA yield was maximized at 10 gVS / l / d of loading rate. On the basis of this study was executed to identify the optimum HRT of 1, 2 and 4 days at 10 gVS / l / d of loading rate in acidogenic phase. The maximum VFA yield was obtained at 1 days of HRT.

  • PDF

Characteristic evaluation of settlement and stiffness of cement-treated soils with the change of fines content under cyclic dynamic loading (세립분 함량 변화에 따른 반복 동하중을 받는 시멘트 혼합토의 침하 및 강성 특성평가)

  • Kim, Dae Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.23-29
    • /
    • 2020
  • The soil structures settle down continuously under cyclic dynamic loading after opening railway lines. This study examined the characteristics of the settlement and stiffness of cement-treated soils with the change in the content of fines under cyclic dynamic loading. Eighteen cases of the test were carried out with the changes in the fines content of soils, cement content, and curing days. Based on the test results, cement-treated soils containing more than 3% of cement could decrease settlement sufficiently even with a high portion of fines under cyclic dynamic loading. In addition, the elastic and plastic settlements could be reduced using 3 to 4% cement to the level of 1/4 and 1/6, respectively. In the viewpoint of stiffness, the resilient modulus of cement-treated soils increases with increasing cement content. Using more than 3% of cement, the 80MPa compaction stiffness standard for the upper subgrade of railways was satisfied, even with 40% of fines content of soils.

Characteristics of Deformation Modulus and Poisson's Ratio of Soil by Unconfined Loading-Reloading Axial Compression Process (재하-제하과정에서 발생하는 흙의 변형계수 및 포아송비의 특성)

  • Song, Chang-Seob;Kim, Myeong-Hwan;Kim, Gi-Beom;Park, Oh-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.45-52
    • /
    • 2022
  • Prediction of soil behavior should be interpreted based on the level of axial strain in the actual ground. Recently numerical methods have been carried out focus on the state of soil failure. However considered the deformation of soil the prior to failure, mostly the small strain occurring in the elastic range is considered. As a result of calculating the deformation modulus to 50% of the maximum unconfined compression strength, Deformation modulus (E50) showed a tendency to increase according to the degree of compaction by region. The Poisson's ratio during loading-unloading was 0.63, which was higher than the literature value of 0.5. For the unconfined compression test under cyclic loading for the measurement of permanent strain, the maximum compression strength was divided into four step and the test was performed by load step. Changes in permanent strain and deformation modulus were checked by the loading-unloading test for each stage. At 90% compaction, the permanent deformation of the SM sample was 0.21 mm, 0.37 mm, 0.6 mm, and 1.35 mm. The SC samples were 0.1 mm, 0.17 mm, 0.42 mm, and 1.66 mm, and the ML samples were 0.48 mm, 0.95 mm, 1.30 mm, and 1.68 mm.

Finite Element Modeling and Nonlinear Analysis of Lumbosacrum Including Partial Ilium and Iliolumbar Ligaments (부분 장골과 장요추 인대를 포함한 요추 천추골의 유한 요소 모델링 및 비선형 해석)

  • Ha, S.K.;Lim, J.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.397-409
    • /
    • 2007
  • Owing to needs of biomechanical comprehension and analysis to obtain various medical treatment designs which are related with the spine in order to cure and diagnose LBP patients, the FE modeling and nonlinear analysis of lumbosacrum including a partial ilium and iliolumbar ligaments, were carried out. First, we investigated whether the geometrical configuration of vertebrae displayed by DICOM slice files is regular and normal condition. After constructing spinal vertebrae including a partial ilium, a sacrum and five lumbars (from L1 to L5)with anatomical shape reconstructed using softwares such as image modeler and CAD modeler, we added iliolumbar ligaments, lumbar ligaments, discs and facet joints, etc.. And also, we assigned material property and discretized the model using proper finite element types, thus it was completely modeled through the above procedure. For the verification of each segment, average sagittal ROM, average coronal ROM and average transversal ROM under various loading conditions(${\pm}10Nm$), average vertical displacement under compression(400N), ALL(Anterior Longitudinal Ligament) and PLL(Posterior Longitudinal Ligament) force at L12 level, strains of seven ligaments on sagittal plane at L45 level and maximal strain of disc fibers according to various loading conditions at L45 level, etc., they were compared with experimental results. For the verification of multilevel-lumbosacrum spine including partial ilium and iliolumbar ligaments, the cases with and without iliolumbar ligaments were compared with ROM of experiment. The results were obtained from analysis of the verified FE model as follows: I) Iliolumbar ligaments played a stabilizing role as mainly posterior iliolumbar ligaments under flexion and as both posterior and anterior iliolumbar ligaments of one side under lateral bending. 2) The iliolumbar ligaments decreased total ROM of 1-8% in total model according to various motion conditions, which changed facet contact forces of L5S level by approximately 0.8-1.4 times and disc forces of L5S level by approximately 0.8-1.5 times more than casewithout ilioligaments, under various loading conditions. 3) The force of lower discs such as L45 and L5S was bigger than upper discs under flexion, left and right bending and left and right twisting, except extension. 4) It was predicted that strains of posterior ligaments among iliolumbar ligaments would produce the maximum 16% under flexion and the maximum 10% under twisting. 5) It's expected that this present model applies to the development and design of artificial disc, since it was comparatively in agreement with the experimental datum.

A study on the ergonomic aspects of the proper luminance level of displays

  • Lee, Eunjung;Kim, Sangho;Park, HyeRyoung;Bae, Jaewoo;Lee, Seungbae;Kim, Haksun
    • Journal of Information Display
    • /
    • v.13 no.4
    • /
    • pp.159-166
    • /
    • 2012
  • In this paper, a display's emotional image quality can be primarily determined by designing the proper luminance level. Though displays with high luminance are preferred, too much light emission from a display may cause glare or visual fatigue to viewers. To find out the proper luminance level based on various video contents, this study was conducted with an OLED display with a real-black level and a wide color gamut, and with an LCD display with a high luminance level, to set the glare threshold under various conditions. The optimum luminance levels according to the display's loading ratio were found, and the maximum luminance that did not cause a glare in the test is proposed.

Determination of radius of edge round cut of loading head for deformation strength test (변형강도 시험용 하중봉의 원형절삭반경 선정연구)

  • Park, Tae-W.;Doh, Young-S.;Kim, Kwang-W.
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.183-191
    • /
    • 2008
  • This study evaluated influence of the loading head dimension on characteristics of deformation strength ($S_D$) of asphalt mixtures. Kim test and Wheel tracking (WT) test were conducted to evaluate $S_D$ characteristics with relation to WT results for various mixtures. The $S_D$ values and coefficient of variation of $S_D$ values of r=10mm were smaller than those of r=10.5mm. It was also found that $S_D$ values obtained using r=10mm loading head showed high correlations with rut parameters of WT test. It was indicated that the aggregate size and radius (r) of round cut were statistically significant variables on $S_D$ at = 0.05 level in the analysis of variance. However, in interaction of r and aggregate size showed no significance within $10{\sim}19mm$ aggregate size at the same level. Therefore, it was concluded that the diameter (D) of 40mm and the bottom edge radius (r) of 10mm was suitable dimension of loading head for deformation strength test.

  • PDF

Transformation of Dynamic Loads into Equivalent Static Loads by the Selection Scheme of Primary Degrees of Freedom (주자유도 선정 기법에 의한 동하중의 등가 정하중으로의 변환)

  • Kim, Hyun-Gi;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • The systematic method to construct equivalent static load from a given dynamic load is proposed in the present study. Previously reported works to construct equivalent static load were based on ad hoc methods. Due to improper selection of loading position, they may results in unreliable structural design. The present study proposes the employment of primary degrees of freedom for imposing the equivalent static loads. The degrees of freedom are selected by two-level condensation scheme with reliability and efficiency. In several numerical examples, the efficiency and reliability of the proposed scheme is verified by comparison displacement for equivalent static loading and dynamic loading at the critical time.

Muscle Recovery After Sciatic Nerve Crush Injury in Rats by Different Loading Swimming Exercise (흰쥐 좌골신경 압좌손상 후 수영운동의 부하에 따른 근육 회복)

  • Rhee, Min-Hyung;Kim, Jong-Soon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.4
    • /
    • pp.525-532
    • /
    • 2013
  • PURPOSE: The aim of this study was to compare the effects of different loading swimming exercises on muscle recovery after sciatic nerve crush injury in rats. METHODS: For this study, thirty-one Sprague-Dawley male rats were randomly divided into five groups. There were the negative control group (NCG, n=5), the positive control group (PCG, n=7), the low intensity swimming exercise group (LISEG, n=7), the moderate intensity swimming exercise group (MISEG, n=7) and the high intensity swimming exercise group (HISEG, n=5). Each rat was weighed to determine the lead weight to be attached to the base of its tail. Subsequently, the PCG, the LISEG, the MISEG and the HISEG were underwent standard unilateral sciatic nerve crush. The LISEG (no load), the MISEG (lead weight equivalent to 2% average body mass) and the HISEG (lead weight equivalent to 4% average body mass) were received the 10 minute swimming exercise in a day for 10 days. The NCG and PCG were not received with any therapeutic intervention. The diameter of the calf muscle and the level of serum lactate dehydrogenase (LDH) were measured to detect the effects of the swimming exercise. RESULT: The maximum diameter of the calf muscles was significantly increased after seventh swimming exercise in the LISEG, the MISEG and the HISEG compared with the PCG (p<0.05). However, there was no statistically significant difference between the LISEG, the MISEG and the HISEG. Also, the level of the serum LDH was significantly decreased in the LISEG, the MISEG and the HISEG compared with the PCG (p<0.05). CONCLUSION: Taken together, these results suggest that swimming exercise could accelerate muscle recovery processes after crush injury, but the different intensity of the swimming exercise does not affect healing processes.

Program Execution Speed Improvement using Executable Compression Method on Embedded Systems (임베디드 시스템에서 실행 가능 압축 기법을 이용한 프로그램 초기 실행 속도 향상)

  • Jeon, Chang-Kyu;Lew, Kyeung-Seek;Kim, Yong-Deak
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.1
    • /
    • pp.23-28
    • /
    • 2012
  • The performance improvement of the secondary storage is very slow compared to the main memory and processor. The data is loaded from secondary storage to memory for the execution of an application. At this time, there is a bottleneck. In this paper, we propose an Executable Compression Method to speed up the initial loading time of application. and we examined the performance. So we implemented the two applications. The one is a compressor for Execution Binary File. and The other is a decoder of Executable Compressed application file on the Embedded System. Using the test binary files, we performed the speed test in the six files. At the result, one result showed that the performance was decreased. but others had a increased performance. the average increasing rate was almost 29% at the initial loading time. The level of compression had different characteristics of the file. And the performance level was dependent on the file compressed size and uncompress time. so the optimized compression algorithm will be needed to apply the execution binary file.