• Title/Summary/Keyword: loading level

Search Result 1,190, Processing Time 0.031 seconds

Characteristics of Fatigue Resistance of Recycled Asphalt Concretes by Modified Mixing Process (재생 아스팔트 콘크리트 혼합물의 혼합방법 개선에 따른 피로저항 특성)

  • Doh, Young-Soo;Ko, Tae-Young;Kim, Kwang-Woo
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.135-143
    • /
    • 2006
  • This study evaluated the fatigue resistance characteristics of hot-mix recycled asphalt mixtures which were prepared by a new blending method. Since the binder of RAP shows higher viscosity without being rejuvenated in the ordinary recycled mixture, this new(modified) blending method was developed for obtaining more uniform level of binder viscosity in the recycled mixture. Cold-planned RAP was collected and mix design was performed using 15% RAP content for two virgin aggregate, gneiss and granite. Penetration grade of 60-80 asphalt was used in mixing recycled mixture together with a polymer modifier, LDPE. Indirect tensile fatigue tests were carried out to evaluate characteristics of fatigue resistance of performance of recycled asphalt mixtures. The recycled mixtures with LDPE 6% showed higher repeated loading fatigue life. Fatigue life ratio of new(N) mixing method mixtures was approximately 0.6-0.7 before aging and 0.8-1.0 after aging treatment of ordinary(O) mixing method mixture. This means the N mixture becomes stronger with aging process increase. If further aging is treated, N mixture may be showing stronger resistance than O mixture.

  • PDF

Seismic Risk Analysis of Track-on-Steel Plate Girder Railway Bridges (무도상 강판형 철도교의 지진 위험도 해석)

  • Park, Joo Nam;Choi, Eun Soo;Kim, Sung Il;Cho, Sung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.45-53
    • /
    • 2009
  • More than 40% of railway bridges on the conventional lines in Korea consist of track-on-steel plate girder (TOSPG) bridges. This type of bridge is typically designed without considering seismic loadings, as most of them were built before 1970. The seismic performance of this particular type of bridge could be upgraded through various seismic retrofit schemes, and seismic risk assessment could play a key role in decision-making on the level of the seismic retrofit. This study performed a seismic risk assessment of TOSPG bridges in Korea. The seismic damage of several crucial components of TOSPG bridges--fixed bearings, free bearings, and piers--were probabilistically estimated, and their seismic fragility curves were developed. The probability that the components would exceed their predefined limit states was also calculated by combining the fragility curves and the seismic hazard function. The analysis showed that the piers of TOSPG bridges, which are made of plain concrete without rebars, have relatively low risk against seismic loadings in Korea. This is because the mass of the superstructures of TOSPG bridges is relatively small, and hence, the seismic loading being transferred to the piers is minimal. The line-type bearings typically used for TOSPG bridges, however, are exposed to a degree of seismic risk. Among the bearings, the probability of the free-end bearings and the fixed-end bearings exceeding the slight damage state in 50 years was found to be 12.78% and 4.23%, respectively. The gap between these probability values lessened towards more serious damage states. This study could effectively provide an engineering background for decision-making activities on the seismic retrofit of railway bridges.

Structural Behavior of Steel Wire Truss Deck with Continuous Lattices to the Longitudinal Direction (길이방향으로 연속된 래티스를 가지는 철선 트러스데크의 구조 거동)

  • Lee, Sung Ho;Park, Hyung Chul;Oh, Bo Hwan;Cho, Soon Bo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.37-44
    • /
    • 2009
  • A truss deck system that has replaced the slab form conventional method has become widely used in the construction of reinforced concrete structures as well as steel structures. The current commercial products, however, have some problems. The discontinuity between the lattice wires on the joint of the bottom wire induces vierendeel behavior, which increases the deflection of the system. In this research, a new truss deck system with continuous lattice wires on the level of the bottom wire was developed to reduce the system's vierendeel behavior and to improve its deformation capacity. To investigate the system's structural behavior, an experimental test and an analysis were performed. The main parameters of the test and analysis were the longitudinal shape and spacing of the lattices. To simulate the loading condition in the construction field, uniform construction loads were directly applied on the deck plates of the analysis model and the test specimens. The results of such analysis and test revealed that the longitudinal shape of the lattice wires is a major factor affecting the structural behavior of a steel wire truss deck. Thus, continuous lattice wires could result in decreased vierendeel behavior in the steel wire truss deck. It was also found that the truss deck system with lattices spaced longer than in the conventional products could be effectively used without increasing the member stresses.

Occupational Factors Influencing the Forklift Operators' Exposure to Black Carbon (지게차 운전원의 블랙카본(black carbon, BC) 노출에 영향을 미치는 직업적 요인)

  • Lee, Hyemin;Lee, Seunghee;Ryu, Seung-Hun;Park, Jihoon;Park, Dong-Uk
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.4
    • /
    • pp.313-323
    • /
    • 2017
  • Objectives: This study aimed to assess exposure to black carbon(BC) among forklift operators and to identify environmental and occupational factors influencing their BC exposure. Methods: We studied a total of 23 forklift operators from six workplaces manufacturing paper boxes. A daily BC exposure assessment was conducted during working hours from January to April 2017. A micro-aethalometer was used to monitor daily BC exposure, and information on work activities was also obtained through a time-activity diary(TAD) and interviews. BC exposure records were classified into four categories influencing BC exposure level: working environment, workplace, forklift operation, and job characteristics. Analysis of variance(ANOVA) was used to compare average BC exposure levels among the four categories and the relationships between potential factors and BC exposure were analyzed using a multiple linear regression model. Results: The operators' daily exposure was $12.9{\mu}g/m^3$(N=9,148, $GM=7.5{\mu}g/m^3$) with a range: $0.001-811.4{\mu}g/m^3$. The operators were exposed to significantly higher levels when they operate a forklift in a room ${\leq}20,000m^3$($AM=12.3{\mu}g/m^3$), in indoor workplaces($AM=16.3{\mu}g/m^3$), when they operate a forklift manufactured before 2006 ($AM=13.2{\mu}g/m^3$), a forklift with a loading limit of four-tons($AM=27.1{\mu}g/m^3$), with a roll and bale type clamp($AM=17.1{\mu}g/m^3$), and with no particulate filter($AM=15.7{\mu}g/m^3$). Conclusions: Occupational factors including temperature, smoking, season, daytime, room volume($m^3$), location of operating, and manufacturing era and model of forklift influenced the BC exposure of forklift operators. The results of this study can be used to minimize the BC exposure of forklift operators.

Algebraic Analysis for Partitioning Root and Stem Lodging in Rice Plant

  • Chang, Jae-Ki;Yeo, Un-Sang;Lee, Jeom-Sig;Oh, Byong-Geun;Kim, Jeong-Il;Yang, Sae-Jun;Ku, Yeon-Chung;Kim, Ho-Yeong;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2006
  • Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.

Effects of Sewage Effluent on Organic Matters of Nakdong River: Comparison of Daily Loading (낙동강 수계 내 하수처리 방류수가 하류 하천 유기물에 미치는 영향: 부하량 비교)

  • Seong, Jin-Uk;Park, Je-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.2
    • /
    • pp.210-217
    • /
    • 2012
  • This study investigated the water quality of effluents from the wastewater treatment plants, located at the Gumi Complex 4, Gumi, and Wonpyong, in Gumi. DOC accounted for higher than 70% of TOC, and oxidation efficiencies, calculated from carbon, were 13~43% for BOD and 37~73% for CODMn, respectively. Based on the biological decomposition experiments, R-DOC account for higher than 70% of DOC, mostly being occupied by refractory organic matters. This indicated that the biodegradable organics occupied more proportions of organic loadings than the refractory organics. The effect of the organics from a discharge of a sewage treatment plant on rivers, Gumi industrial Complex 4, Gumi, and Wonpyong on lower streams of the Nakdong River were found to be 15%, 6% and 16% respectively. The ratio of 15% suggests that comparatively, no large portions of TOC loadings are occupied, but the problem is that the biodegradable organic matters occupy a lot more proportions than that of the refractory organic matters. Thus, it is highly estimated that the refractory organics can gradually increase the pollution level of organics and precursors of disinfection by-products to the down-stream water treatment plants.

Establishment of Integrated Information System for Ballast Water Management (선박평형수 관리를 위한 통합정보시스템 구축)

  • Kim, Eun-Chan;Oh, Jeong-Hwan;Lee, Seung-Guk
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2014
  • Collection and management of various information related to the ballast water are the essential components for the efficient implementation of the IMO Ballast Water Management Convention. Based upon the ballast water risk assessment and information system developed by other states, regions or even at global level, an integrated information system has been established to be applied to our domestic ports. The integrated information system is composed of four DataBases (DB) which are the Shipping DB, Ballast water DB, Port Environment DB and Species DB. The Shipping DB has been established based on the data collected from the Port Management Information System (Port-MIS). For the Ballast water DB, Ballast water has only been estimated by the loading/unloading of the cargoes as the convention has not come into effect yet. The Port Environment DB and Species DB are being established based on the reference documents and existing and newly collected monitoring data. From these DB, the integrated information system will be able to provide a base for the information search, statistic analysis and risk assessment of ballast water. Once the convention comes into effect, this integrated information system will be applied to manage the domestic ballast water discharge and also the port management.

A Physical Model Test on the Behavior of Shield-tunnel Lining According to Drainage Conditions in Weathered Granite Soil (화강풍화토 지반에서 배수조건에 따른 쉴드터널 라이닝의 거동연구를 위한 모형실험)

  • Choi, Gou-Moon;Yune, Chan-Young;Ma, Sang-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.71-82
    • /
    • 2015
  • Recently, due to the expansion of urban infrastructure for the citizen convenience, the shield tunnel construction has increased considering the civil complaints minimization and construction stability. Most shield tunnels are designed based on the assumption of the undrained condition that underground water does not inflow, but they are operated in the field as drained tunnels with drainage facility to drain underground water. Therefore, the drained condition needs to be considered in the shield tunnel design. It is also necessary to consider the weathered granite soil that is widely distributed throughout the country and consequently is encountered in most of construction sites. In this paper, the model test which can control total stress and pore water pressure and simulate the underground tunnel located in the weathered granite soil below ground water level is conducted. Total stress, pore water pressure and an inflow water into an inner pipe were measured using the testing device. Test results showed that the total stress in a drained condition was lower than in an undrained condition because pore water pressure decreased in a drained condition and an inflow water into an inner pipe was proportional to the loading stress in a drained condition. As a result, if a drained condition is considered in the shield tunnel design, the more economical design can be expected because of the stress reduction of the lining.

Mechanical Properties of Wood Flour Polypropylene Composites: Effect of Cycled Temperature Change (Wood Flour 폴리프로필렌 복합재료의 기계적 특성: 반복적 온도 변화의 영향)

  • Lee, S.Y.;Chun, S.J.;Doh, G.H.;Park, S.B.;Choi, S.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.218-222
    • /
    • 2011
  • The effect of cycled temperature change on the mechanical properties of wood flour(50 wt.% and 70 wt.%) polypropylene WPC(Wood Plastic Composites) was investigated in this study. Flexural modulus and flexural strength of the WPC showed a decrease due to the degradation of interfacial adhesion between polymer matrix and wood flour by the freeze-thaw test regardless of the cycled number. At the higher loading level of wood flour, the reduction of the flexural modulus was remarkable. After the cycled heat-freeze test, it was found that the flexural modulus and flexural strength of the WPC were lower at the high temperature ($60^{\circ}C$) and higher at the low temperature ($-20^{\circ}C$). At the low temperature ($-20^{\circ}C$) which is below glass transition temperature of polypropylene ($-10^{\circ}C$), WPC is in a glassy state which brings about the high stiffness and strength. At the high temperature ($60^{\circ}C$), the flexural modulus and flexural strength of the WPC with 50 wt.% wood flour were lower because of the increase of polymer ductility.

Application of Automatic Stormwater Monitoring System and SWMM Model for Estimation of Urban Pollutant Loading During Storm Events (빗물 자동모니터링장치와 SWMM 모델을 이용한 강우시 도시지역 오염부하량 예측에 관한 연구)

  • Seo, Dongil;Fang, Tiehu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.6
    • /
    • pp.373-381
    • /
    • 2012
  • An automatic flow and water quality monitoring system was applied to estimate pollutant loads to an urban stream during storm events in DTV (Daeduk Techno Valley), Daejeon, Korea. The monitoring system consists of rainfall gage, ultrasonic water level meter, water quality sensors for DO, temperature, pH, conductivity, turbidity and automatic water sampler for further laboratory analysis. All data are transmitted through on-line system and the monitoring system is designed to be controlled manually in the field and remotely from laboratory computer. Flow rates were verified with field measurements during storm events and showed good agreements. Automatic sampler was used to collect real time samples and analyzed for BOD, COD, TN, TP, SS and other pollutant concentrations in the laboratory. SWMM (Storm Water Management Model) urban watershed model was applied and calibrated using the observed flow and water quality data for the study area. While flow modeling results showed good agreement for all events, water quality modeling results showed variable levels of agreement. These results indicate that current options in the SWMM model to predict pollutant build up and wash-off effects are not sufficient to satisfy modeling of all the rainfall events under study and thus need further modification. This study showed the automatic monitoring system can be used to provide data to assist further refinement of modeling accuracy. This automatic stormwater monitoring and modeling system can be used to develop basin scale water quality management strategies of urban streams in storm events.