• 제목/요약/키워드: loading history

검색결과 343건 처리시간 0.024초

하중이력에 따른 탄소섬유로 보강된 RC보의 휨 거동 (Flexural Behavior of Reinforced Concrete Beam Strengthened with Carbon Fiber Sheet under Load History)

  • 윤태호;김진상
    • 한국산학기술학회논문지
    • /
    • 제16권1호
    • /
    • pp.845-852
    • /
    • 2015
  • 본 연구에서는 합리적인 보강설계를 위하여 기존 철근콘크리트 보에 탄소섬유시트 보강시 하중이력에 따른 휨보강 효과를 분석하였다. 실구조물에서는 다양한 하중이력을 겪은 철근콘크리트보에 보강을 하게 되나 보강시기에 따른 구조물과 보강재료의 초기상태가 고려되지 않으므로 구조물의 안전적 측면과 경제적 측면으로 문제점을 발생시킬 수 있는 요인이 된다. 다양한 하중이력을 거친 RC 보의 변형률 상태를 고려하여 탄소섬유시트 보강에 따른 거동변화를 분석하였다. 휨보강후 거동에 영향을 미치는 변수들에 대하여 보강대상 부재의 하중이력의 영향을 고려한 비선형 단면해석결과 탄소섬유 휨보강보의 보강 후 구조적 성능은 하중이력에 따라 달라지는 것으로 나타났다. 탄소섬유 휨보강보의 휨강도는 하중이력에 크게 영향을 받으므로 설계시 반드시 고려하여야 한다.

20대 정상성인의 발목에 부가된 하중이 보행중 에너지 소모도에 미치는 영향 (The Influences for Change of energy consumption of normal 20s' adults during gait)

  • 김용건;한동욱
    • 대한물리치료과학회지
    • /
    • 제7권1호
    • /
    • pp.285-294
    • /
    • 2000
  • 80 persons who don't have past history of cardiopulmonary and neuromuscular disease. The results were as follow; 1. PCI(Physiological Cost Index) value without loading to ankle were significantly increased compared to 1kg, and 2kg (p<0.01). 2. Female Subjects showed more increased PCI value in without loading and lkg, 2kg loading compared to male subjects (p<0.01). 3. In every PCI condition the difference among height groups was observed (p<0.01). 4. The difference among weight groups in each PCI condition was observed (p<0.01). These results showed that energy consumption was increased according to loading on the ankle during gait so weight of orthosis or prosthesis must be considered when choosing them and during gait training with these ones.

  • PDF

발사체 관통 콘크리트 충격손상 모델 (Impact damage model of projectile penetration into concrete target)

  • 박대효;노명현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.633-636
    • /
    • 2006
  • Impact damage modeling of concrete under high strain rate loading conditions is investigated. A phenomenological penetration model that can account for complicated impact and penetration process such as the rate and loading history response of concrete, the microstructure-penetration interaction etc. is discussed. Constitutive law compatible with Second Law of thermodynamics and coupled damage and plasticity modelling based on continuum damage mechanics are also examined. The purpose of this paper is preliminarily to study with respect to impact and penetration models for concrete before the development of that model.

  • PDF

재하방법에 따른 프리플렉스빔의 역학적 거동에 관한 연구 (A Study on the Mechanical Behavior of Preflex Beam under Different Preflexion Loading Conditions)

  • 방한서;주성민;김규훈;안해영
    • Journal of Welding and Joining
    • /
    • 제22권2호
    • /
    • pp.33-37
    • /
    • 2004
  • Since the preflex beam is fabricated by welding, the pre-compressive stresses that should occur over the concrete pier are diminished by the welding residual stresses. For this reason distribution of welding residual stresses must be analyzed accurately and welding residual stresses should be relieved during the fabrication. In this study strain history, displacement of beam and re-distributed welding residual stresses by different loading conditions are measured and compared to choose more appropriate preflex condition.

Sense of Place In Wakamatsu Port After 1887, As Seen From The Sunken Coal (Chinbotsu-tan) Problem

  • Torikai, Kaoru
    • Journal of East-Asian Urban History
    • /
    • 제2권1호
    • /
    • pp.129-162
    • /
    • 2020
  • This study aims to inquire the sense of place. As an example, I present some conflicts over the right of coal spilled into the sea during coal loading which had occurred frequently in the formation and development period of the Chikuho coalfield (Chikuho-tanden) and Wakamatsu Port located in the northeastern part of Fukuoka Prefecture.

Damage Index of Steel Members under Severe Cyclic Loading

  • Park, Yeon-soo;Han, Suk-yeol;Suh, Byoung-chal;Jeon, Dong-ho;Park, Sun-joon
    • Computational Structural Engineering : An International Journal
    • /
    • 제3권1호
    • /
    • pp.9-17
    • /
    • 2003
  • This paper aims at investigating the damage process of steel members leading to the failure under strong repeated loading, proposing the damage index using various factors related to the damage, and developing the analysis method for evaluating the damage state. Cantilever-type steel members were analyzed under uniaxial load and combined with a constant axial load, considering a horizontal displacement history. In analyzing the models, loading patterns and steel types (SS400, SM570, Posten80) were considered as main parameters. From the analysis results, the effects of parameter on the failures mode, the deformation capacity, the damage process are also discussed. Each failure process was compared as steel types. Consequently, the failure of steel members under strong repeated loading was determined by loading. Especially it was seen that the state of the failure is closely related to the local strain.

  • PDF

Time-dependent compressibility characteristics of Montmorillonite Clay using EVPS Model

  • Singh, Moirangthem Johnson;Feng, Wei-Qiang;Xu, Dong-Sheng;Borana, Lalit
    • Geomechanics and Engineering
    • /
    • 제28권2호
    • /
    • pp.171-180
    • /
    • 2022
  • Time-dependent stress-strain behaviour significantly influences the compressibility characteristics of the clayey soil. In this paper, a series of oedometer tests were conducted in two loading patterns and investigated the time-dependent compressibility characteristics of Indian Montmorillonite Clay, also known as black cotton soil (BC) soil, during loading-unloading stages. The experimental data are analyzed using a new non-linear function of the Elasto-Visco-Plastic Model considering Swelling behaviour (EVPS model). From the experimental result, it is found that BC soil exhibits significant time-dependent behaviour during creep compared to the swelling stage. Pore water entrance restriction due to consolidated overburden pressure and decrease in cation hydrations are responsible factors. Apart from it, particle sliding is also evident during creep. The time-dependent parameters like strain limit, creep coefficient and Cαe/Cc are observed to be significant during the loading stage than the swelling stage. The relationship between creep coefficients and applied stresses is found to be nonlinear. The creep coefficient increases significantly up to 630 kPa-760 kPa (during reloading), and beyond it, the creep coefficient decreases continuously. Several parameters like loading duration, the magnitude of applied stress, loading history, and loading path have also influenced secondary compressibility characteristics. The time-dependent compressibility characteristics of BC soil are presented and discussed in detail.

자동차의 쇽업쇼바 마운트에 대한 구조 및 피로해석 (Structural and Fatigue Analysis on Shock Absorber Mount of Automobile)

  • 한문식;조재웅
    • 한국기계가공학회지
    • /
    • 제11권1호
    • /
    • pp.125-133
    • /
    • 2012
  • This study aims at structural analysis with fatigue on the shock absorber mount of automobile. Two kinds of mount as original model 1 and reinforced model 2 are applied. Among the cases of nonuniform fatigue loads at both models, 'SAE bracket history' with the severest change of load becomes most unstable but 'Sample history' becomes most stable. In case of 'SAE bracket history' or 'SAE transmission', the maximum fatigue life at model 2 is 5 to 6 times as much as model 1 and the minimum damage at model 2 is decreased 5 to 6 times as much as model 1. In case of 'Sample history' as slow fatigue loading history, the minimum damage at model 2 becomes same as model 1 but the maximum fatigue life at model 2 is decreased more than 17 times as much as model 1. In case of 'Sample History' with the average stress of -$10^4MPa$ to $10^4MPa$ and the amplitude stress of 0MPa to $10^4MPa$, the possibility of maximum damage becomes 3%. This stress state can be shown with 5 times more than the damage possibility of 'SAE bracket history' or 'SAE transmission'. Safe and durable design of shock absorber can be effectively improved by using this study result on mount frame.

Reduced record method for efficient time history dynamic analysis and optimal design

  • Kaveh, A.;Aghakouchak, A.A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.639-663
    • /
    • 2015
  • Time history dynamic structural analysis is a time consuming procedure when used for large-scale structures or iterative analysis in structural optimization. This article proposes a new methodology for approximate prediction of extremum point of the response history via wavelets. The method changes original record into a reduced record, decreasing the computational time of the analysis. This reduced record can be utilized in iterative structural dynamic analysis of optimization and hence significantly reduces the overall computational effort. Design examples are included to demonstrate the capability and efficiency of the Reduced Record Method (RRM) when utilized in optimal design of frame structures using meta-heuristic algorithms.

The effects of vertical earthquake motion on an R/C structure

  • Bas, Selcuk;Kalkan, Ilker
    • Structural Engineering and Mechanics
    • /
    • 제59권4호
    • /
    • pp.719-737
    • /
    • 2016
  • The present study investigated the earthquake behavior of R/C structures considering the vertical earthquake motion with the help of a comparative study. For this aim, the linear time-history analyses of a high-rise R/C structure designed according to TSC-2007 requirements were conducted including and excluding the vertical earthquake motion. Earthquake records used in the analyses were selected based on the ratio of vertical peak acceleration to horizontal peak acceleration (V/H). The frequency-domain analyses of the earthquake records were also performed to compare the dominant frequency of the records with that of the structure. Based on the results obtained from the time-history analyses under the earthquake loading with (H+V) and without the vertical earthquake motion (H), the value of the overturning moment and the top-story vertical displacement were found to relatively increase when considering the vertical earthquake motion. The base shear force was also affected by this motion; however, its increase was lower compared to the overturning moment and the top-story vertical displacement. The other two parameters, the top-story lateral displacement and the top-story rotation angle, barely changed under H and H+V loading cases. Modal damping ratios and their variations in horizontal and vertical directions were also estimated using response acceleration records. No significant change in the horizontal damping ratio was observed whereas the vertical modal damping ratio noticeably increased under H+V loading. The results obtained from this study indicate that the desired structural earthquake performance cannot be provided under H+V loading due to the excessive increase in the overturning moment, and that the vertical damping ratio should be estimated considering the vertical earthquake motion.