• 제목/요약/키워드: loading history

검색결과 343건 처리시간 0.021초

Distributed crack sensors featuring unique memory capability for post-earthquake condition assessment of RC structures

  • Chen, Genda;McDaniel, Ryan;Sun, Shishuang;Pommerenke, David;Drewniak, James
    • Smart Structures and Systems
    • /
    • 제1권2호
    • /
    • pp.141-158
    • /
    • 2005
  • A new design of distributed crack sensors based on the topological change of transmission line cables is presented for the condition assessment of reinforced concrete (RC) structures during and immediately after an earthquake event. This study is primarily focused on the performance of cable sensors under dynamic loading, particularly a feature that allows for some "memory" of the crack history of an RC member. This feature enables the post-earthquake condition assessment of structural members such as RC columns, in which the earthquake-induced cracks are closed immediately after an earthquake event due to gravity loads, and are visually undetectable. Factors affecting the onset of the feature were investigated experimentally with small-scale RC beams under cyclic loading. Test results indicated that both crack width and the number of loading cycles were instrumental in the onset of the memory feature of cable sensors. Practical issues related to dynamic acquisition with the sensors are discussed. The sensors were proven to be fatigue resistant from shake table tests of RC columns. The sensors continued to show useful performance after the columns can no longer support additional loads.

Experimental analysis of blast loading effects on security check-post

  • Muhammed Rizvan Akram;Ali Yesilyurt
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.273-282
    • /
    • 2023
  • Concrete construction, one of the oldest building practices, is commonly used in all parts of the world. Concrete is the primary building material for both residential and commercial constructions. The challenge of protecting the buildings, hence nation, against the attack of terrorism has raised the importance to explore the understanding of building materials against the explosion. In this research, a security check-post (reinforced concrete frame filled with plain cement concrete) has been chosen to study the behavior of structural elements under blast loading. Eight nitroglycerines-based dynamite blasts with varying amounts of explosive charge, up to 17 kg weight has been carried out at various scale distances. Pressure and acceleration time history records are measured using blast measuring instruments. Security check post after being exposed by explosive loading are photographed to view cracking/failure patterns on the structural elements. It is noted that with the increase of quantity of explosive, the dimensions of spalling and crack patterns increase on the front panels. Simple empirical analyses are conducted using ConWep and other design manuals such as UFC 3-340-02 (2008) and AASTP-1 (2010) for the purpose of comparison of blast parameters with the experimental records. The results of experimental workings are also compared with earlier researchers to check the compatibility of developed equations. It is believed that the current study presents the simple and preliminary procedure for calculating the air blast and ground shock parameters on the structures exposed to blast explosion.

Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless steel pipe

  • Wang, Lei;Chen, Gang;Zhu, Jianbei;Sun, Xiuhu;Mei, Yunhui;Ling, Xiang;Chen, Xu
    • Structural Engineering and Mechanics
    • /
    • 제52권6호
    • /
    • pp.1135-1156
    • /
    • 2014
  • The ratcheting effect greatly challenges the design of piping components. With the assistance of the quasi-three point bending apparatus, ratcheting and the ratcheting boundary of pressurized straight Z2CND18.12N stainless steel pipe under bending loading and vertical displacement control were studied experimentally. The characteristics of progressive inelastic deformation in axial and hoop directions of the Z2CND18.12N stainless steel pipes were investigated. The experiment results show that the ratcheting strain occurs mainly in the hoop direction while there is less ratcheting strain in the axial direction. The characteristics of the bending ratcheting behavior of the pressure pipes were derived and compared under load control and displacement control, respectively. The results show that the cyclic bending loading and the internal pressure affect the ratcheting behavior of the pressurized straight pipe significantly under load control. In the meantime, the ratcheting characteristics are also highly associated with the cyclic displacement and the internal pressure under displacement control. All these factors affect not only the saturation of the ratcheting strain but the ratcheting strain rate. A series of multi-step bending ratcheting experiments were conducted under both control modes. It was found that the hardening effect of Z2CND18.12N stainless steel pipe under previous cyclic loadings no matter with high or low displacement amplitudes is significant, and the prior loading histories greatly retard the ratcheting strain and its rate under subsequent loadings. Finally, the ratcheting boundaries of the pressurized straight Z2CND18.12N stainless steel pipe were determined and compared based on KTA/ASME, RCC-MR and the experimental results.

Effects of Low Grade Axial Loading on Discogenic Low Back Pain: A Case Report

  • Chang, Duncan;Boby, Arantxa;Madonna, James
    • 국제물리치료학회지
    • /
    • 제9권4호
    • /
    • pp.1683-1686
    • /
    • 2018
  • Low back pain (LBP) is the most common reason for seeking physical therapy (PT) care. Recent studies suggest that axial loading can have a positive impact on the intervertebral disc by improving its tensile strength. Further, whole body vibration (WBV) appears to improve spinal muscle relaxation. Therefore, this case study describes the use of axial loading using a mini-trampoline in a female with chronic LBP. This case report is a single subject design. This patient is a 29-year-old female with a six-month history of low back pain following a motor vehicle accident. MRI found herniated discs at L4 and L5, clinical tests were positive for pain in the L4 and L5 dermatome and myotome the slump test was positive for neural tension, and LBP was constant at 4-6/10 over the past four months. She received axial loading exercises using a mini-trampoline and performed six sessions that were, scheduled twice a week for three weeks. Her Oswestry Disability Index (ODI) score improved from 40% at the time of her first visit to 22% at her final visit. Pain measure on the Numeric Pain Rating Scale (NPRS) after the first treatment was 7/10, and her pain after the final treatment was 0/10. These changes in the pain scores are clinically significant and exceed the minimal clinically important difference (MCID). This patient had a significant improvement in her pain using the NPRS and the ODI. This case study suggests that axial loading may be an effective treatment for some individuals with discogenic chronic low back pain.

Seismic investigation of pushover methods for concrete piers of curved bridges in plan

  • Ahmad, Hamid Reza;Namdari, Nariman;Cao, Maosen;Bayat, Mahmoud
    • Computers and Concrete
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2019
  • The use of non-linear analysis of structures in a functional way for evaluating the structural seismic behavior has attracted the attention of the engineering community in recent years. The most commonly used functional method for analysis is a non-linear static method known as the "pushover method". In this study, for the first time, a cyclic pushover analysis with different loading protocols was used for seismic investigation of curved bridges. The finite element model of 8-span curved bridges in plan created by the ZEUS-NL software was used for evaluating different pushover methods. In order to identify the optimal loading protocol for use in astatic non-linear cyclic analysis of curved bridges, four loading protocols (suggested by valid references) were used. Along with cyclic analysis, conventional analysis as well as adaptive pushover analysis, with proven capabilities in seismic evaluation of buildings and bridges, have been studied. The non-linear incremental dynamic analysis (IDA) method has been used to examine and compare the results of pushover analyses. To conduct IDA, the time history of 20 far-field earthquake records was used and the 50% fractile values of the demand given the ground motion intensity were computed. After analysis, the base shear vs displacement at the top of the piers were drawn. Obtained graphs represented the ability of a cyclic pushover analysis to estimate seismic capacity of the concrete piers of curved bridges. Based on results, the cyclic pushover method with ISO loading protocol provided better results for evaluating the seismic investigation of concrete piers of curved bridges in plan.

Dynamic behavior of H-shape tall building subjected to wind loading computed by stochastic and CFD methodologies

  • Lucas Willian Aguiar Mattias;Joao Elias Abdalla Filho
    • Wind and Structures
    • /
    • 제37권3호
    • /
    • pp.229-243
    • /
    • 2023
  • This study analyzes the response of a tall building with an H-shaped cross-section when subjected to wind loading generated by the same H-shape. As normative standards usually adopt regular geometries for determining the wind loading, this paper shows unpublished results which compares results of the dynamic response of H-shaped buildings with the response of simplified section buildings. Computational Fluid Dynamics (CFD) is employed to determine the steady wind load on the H-shaped building. The CFD models are validated by comparison with wind tunnel test data for the k-ε and k-ω models of turbulence. Transient wind loading is determined using the Synthetic Wind Method. A new methodology is presented that combines Stochastic and CFD methods. In addition, time-history dynamic structural analysis is performed using the HHT method for a period of 60 seconds on finite element models. First, the along-wind response is studied for wind speed variations. The wind speeds of 28, 36, 42, and 50 m/s at 0° case are considered. Subsequently, the dynamic response of the building is studied for wind loads at 0°, 45°, and 90° with a wind speed of 42 m/s, which approximates the point of resonance between gusts of wind and the structure. The response values associated with the first two directions for the H-shaped building are smaller than those for the R-shaped (Equivalent Rectangular Shape) one. However, the displacements of the H-shaped building associated with the latter wind load are larger.

압밀, 토모그래피, 액상화시험에서 벤더엘리먼트의 적용 (Application of Bender Elements in Consolidation, Tomography, and Liquefaction Tests)

  • 이종섭;이창호
    • 한국지반공학회논문집
    • /
    • 제22권8호
    • /
    • pp.43-54
    • /
    • 2006
  • 본 논문은 벤더 엘리먼트를 압밀, 토모그래피, 그리고 액상화에 적용하는 방법을 다루었다. 모래와 점토를 이용하여 압밀 시험을 수행하면서 전단파 속도를 측정하여 하중 재하 및 제하 시기를 평가하였다. 전단파 속도는 유효응력의 함수이므로 전단파 속도를 이용하여 하중 재하시기를 결정할 수 있으나, 침하량 기준과 전단파 속도(유효응력) 메카니즘이 다를 수 있으므로 주의해야 한다. 또한 전단파 속도는 고결화 제어 구간(cemented controlled regime)과 응력 제어 구간(stress controlled regime)으로 구별할 수 있어 응력이력현상을 확인할 수 있다. 벤더 엘리먼트가 설치된 고정된 프레임에서 전단파 토모그래피가 가능하다. 낮은 구속응력상태와 진 삼축 장비 내에서 토모그래피 실험을 수행한 결과 전단파 토모그래피는 평균유효응력과 관련된 전단파 속도 변화의 관측에 사용될 수 있음을 보여 주였다. 한편 액상화와 같은 어떤 현상을 관측하기 위하여 반복 주기가 높은 방식의 전단파 트랜스-일루미네이션(trans-illumination)이 적용되었다. 전단파 속도와 크기의 전개는 액상화 동안 과잉간극수압의 경향과 평행함을 알 수 있었다. 본 논문에서 소개한 적용들은 벤더 엘리먼트가 실내 시험에서 전단파 검측에 상당히 효과적인 방법이 될 수 있음을 보여준다.

반복하중을 받는 철근콘크리트 보의 에너지소산계수 변화 특성 고찰 (Study on the Variation of Energy Dissipation Factor of Reinforced Concrete Beam under Cyclic Loading)

  • 유석형;강대영
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권6호
    • /
    • pp.86-93
    • /
    • 2023
  • 반복하중을 받는 철근콘크리트 부재는 이력거동이 진행됨에 따라 강성과 강도의 저하 그리고 핀칭현상 등으로 인하여 에너지소산 능력이 감소된다. 그러나 지침서 「철근콘크리트 건축구조물의 성능기반 내진설계를 위한 비선형해석모델, 2021」에서는 각 부재별로 모든 이력단계별 단일한 에너지소산계수를 산정하도록 하고 있어 이력단계에 따른 에너지소산능력의 감소를 고려할 수 없을 것으로 판단된다. 따라서 본 연구에서는 반복하중을 받는 일반보에 대한 기존 실험결과와 비선형시간이력해석 결과를 비교하여 이력단계에 따른 에너지소산계수를 고찰하였다. 에너지소산계수는 비선형시간이력해석 결과로 구한 이상화된 탄소성거동 에너지 소산량에 대한 실제 실험체의 에너지소산량의 비로써 산출하였다. 기존 실험결과는 1회 Cycle을 각 이력단계별로 산정하여 에너지소산계수를 도출하였으며, 지침서 내 비선형모델링 과정을 토대로 에너지소산계수를 도출하였다. 기존 실험연구에선 각 이력단계(Y-L-R)를 설정하여 에너지소산계수를 구하였으며, 에너지소산계수는 Y-L구간 0.36, L-R구간 0.28로 나타났고, 지침서 에너지소산계수는 0.31로 나타났다. 이는 지침서의 에너지소산계수 산정식이 철근콘크리트 부재의 에너지소산능력의 감소를 나타내지 못하는 것으로 나타났다.

고강도 콘크리트를 사용한 R/C 평면골조의 동적응답해석 (Dynamic Response Analysis of R/C Frame Structures Using High-Strength Concrete)

  • 장극관;황정현;방세용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.278-286
    • /
    • 2001
  • The purpose of this paper is to suggest an analytical technique for time history analysis of R/C frame structure using high-strength concrete under seismic loading. Current researches in hysteretic model of structral elements using high-strength concrete are not enough. It is the cause of error that apply hysteretic model of element using normal-strength concrete to the inelastic analysis of high-strength concrete R/C frame structures. In this paper time history analysis using IDARC and DRAIN programs was performed for a 2-bay, 20-story R/C frame structures. Particularly nonlinear dynamic analysis was performed by IDARC program that was applied hysteretic model of structural element using high-strength concrete. centro earthquake 1940 NS waves was used in the analysis and its peak ground accelerations are changed to be 0.12g, 0.25g

  • PDF

Seismic Response Analysis of Reinforced Concrete Wall Structure Using Macro Model

  • Kim, Dong-Kwan
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권1호
    • /
    • pp.99-112
    • /
    • 2016
  • During earthquake, reinforced concrete walls show complicated post-yield behavior varying with shear span-to-depth ratio, re-bar detail, and loading condition. In the present study, a macro-model for the nonlinear analysis of multi-story wall structures was developed. To conveniently describe the coupled flexure-compression and shear responses, a reinforced concrete wall was idealized with longitudinal and diagonal uniaxial elements. Simplified cyclic material models were used to describe the cyclic behavior of concrete and re-bars. For verification, the proposed method was applied to various existing test specimens of isolated and coupled walls. The results showed that the predictions agreed well with the test results including the load-carrying capacity, deformation capacity, and failure mode. Further the proposed model was applied to an existing wall structure tested on a shaking table. Three-dimensional nonlinear time history analyses using the proposed model were performed for the test specimen. The time history responses of the proposed method agreed with the test results including the lateral displacements and base shear.