• Title/Summary/Keyword: loading height

Search Result 518, Processing Time 0.023 seconds

Evaluation of Lateral Load Resistance Capacity of a High-rise Shear Wall Apartment Based on Elasto-plastic Analaysis (정적 탄소성 해석에 의한 고층 벽식 아파트의 수평내력 검토)

  • 전대한;강호근;조한욱;이정원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.31-40
    • /
    • 1998
  • The purpose of this study is to investigate static elastoplastic behaviour and estimate ultimate resistance capacity of a high-rise apartment shear wall system subjected to a vertical distribution of lateral loading along the height. A typical 25-story two unit plan apartment is selected as a representive model. For the analysis, the pushover analysis is adopted to estimate initial elastic stiffness, post-yielding stiffness and story shear yield resistance level on each story of the structure through three-dimensional nonlinear analysis program-CANNY. In the result of elastoplastic analysis, it is observed that the yield strength of building structures is 1.6 times larger than required lateral design strength.

  • PDF

Estimation of Surface Forces in Micro Rough Surface Contacts

  • Kim, Doo-In;Ahn, Hyo-Sok;Choi, Dong-Hoon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.63-64
    • /
    • 2002
  • In a micro-scale contact, surface forces such as capillary force and van der Waals Interaction significantly Influence the contact between asperities of rough surfaces. Little is, however, known about the variation of these surface forces as a function of chemical property of the surface (hydrophilicity), relative humidity and deformation of asperities In the real area of contact. A better understanding of these surface forces is of great necessity in order to find an optimal solution for reducing friction and adhesion of micro surfaces. We proposed an effective method to analyze capillary and van der Waals forces In nano-scale contact. In this method, Winklerian foundation model was employed to analyze the contact of rough surfaces that were obtained from atomic force microscopy (AFM) height Images. Self-mated contact of diamond-like-carbon (DLC) coatings was analyzed, as an example, by the proposed model. It was shown that the capillary force was significantly influenced by relative humidify and wet angle of the DLC surface. The deformation of asperities to a critical magnitude by external loading led to a considerable increase of both capillary and van der Waals forces.

  • PDF

Effect of Loaded Warm-up Jumps on the Following Performance of Vertical Jump (과중량을 이용한 워밍업 점프가 사후 점프 수행에 미치는 영향)

  • Kim, Hyun-Goun;Kim, Young-Kwan;Cho, Hang Nan
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.167-174
    • /
    • 2015
  • Purpose : The purpose of this study was to investigate the effects of loaded vertical jumps on the following vertical jumps and to find how long the transient effect of warm-ups would continue. Methods : Twelve healthy college male students, majoring in physical education, participated in this study voluntarily. They performed three sets of unloaded jumps (pre-jump, 5% post jump, and 10% post jump) and two sets of loaded jumps (5% and 10% loaded jumps) according to the counter-balanced order. At each set, three trials of maximal vertical jumps were performed by a 30 second interval between trials and a 3 minute break after warm-up jumps. Force platform and motion capturing system were used to record motions and ground reaction force. Results : Only 5% post-warm-up jumps ($48.29{\pm}2.06cm$) showed significant increase in the jump height compared with pre-warm-up jumps ($47.35{\pm}2.21cm$). The transient effects of loaded warm-ups disappeared 4 minutes after loaded jumps. Conclusion : Conclusively, a decent amount of loading (around 5% extra of body weight) during sport specific warm-ups would give a positive, transient effect on the performance of the vertical jump.

Gender Differences of Vertical Drop Landing Strategies in College Students

  • Yi, Chung-Hwi;Park, So-Yeon;Yoo, Won-Gyu
    • Physical Therapy Korea
    • /
    • v.11 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • The kinematics involved in different landing strategies may be related to the occurrence of trauma. Several sources suggest that the angle of knee extension on touchdown and impact with the ground determines the magnitude of the impact force and, indirectly, knee loading. This study compared the initial knee angle and maximum knee flexion angle at the instant of impact on drop-landings between healthy men and women. In this study, 60 participants (30 males, 30 females) dropped from a height of 43 cm. A digital camera and video motion analysis software were used to analyze the kinematic data. When landing, there was significant difference between the two groups ($15.67{\pm}6.05^{\circ}$ in male, $24.10{\pm}6.34^{\circ}$ in female) in the mean knee flexion angle. The range of knee flexion on landing ($44.06{\pm}10.97^{\circ}$ in male, $36.96{\pm}9.99^{\circ}$ in female) also differed significantly (p<.05). The greater knee flexion that was observed in the male subjects would be expected to decrease their risk of injury. Women land with smaller range of knee flexion than men and this might increase the likelihood of a knee injury.

  • PDF

A Study on the Curing Bladder Shaping of Tire by Finite Element Method Using Contact Element (접촉요소를 이용한 유한요소법에 의한 타이어 가류브레더 팽창거동에 관한 연구)

  • Kim, Hang-Woo;Hwang, Gab-Woon;Cho, Kyu-Zong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.378-384
    • /
    • 1997
  • In curing process of tire, contact and slip occurs between green tire and curing bladder. The curing process is a critical step in the manufacture of tires. In this investigation, curing bladder shaping is examined using a finite element method. Specifically, a finite element model between the inner part of green tire and the outer part of curing bladder is generated using contact element and curing bladder is generated using incompressible element. Numerical analysis are performed on two different bladder types, different overall outer diameters of curing bladder and different heights of curing bladder. Numerical results show that contact pressure is increased by using toroidal type of curing bladder, increasing overall diameter and increasing height of curing bladder. To obtain natural equilibrium carcass line, there is a requirement in increasing contact pressure of the section between side and bead.

A Study on the Property of the Foot Form of Early Childhood Children from Three to Six Years old(II) - On the Classification of Foot Type - (적료의 말 형태에 관한 연구(II) - 유형분석을 중심으로 -)

  • 문명옥
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.21 no.1
    • /
    • pp.144-154
    • /
    • 1997
  • For design of early childhood children's footwear, this study was to analyze the foot type by factor analysis and cluster analysis. This study was performed 200 male and 200 female early childhood children from 3 to 6 years, reported in part 1. The result was as follows : 1. There are no significant differences concerning significances, factor loading, eigenvalues, and contribution rates of factor among the results abtained by analyzing the male, female and both sexes data. 2. The 1st factor signifies the size factor that represents total foot mass. The average scores of the 1st factor significantly increase with age in both sexes, and those scores of male are significantly higher than those of female. 3. The End factor signifies the height of Tarsal, Heel and Arch. The average scores of the 2nd factor significantly increase with age in both sexes, and there are no significant differences between the average scores of male and female's except the age 3. 4. The 3rd factor signifies the shape of Metatarso-phalanx angle. The average scores of the 3rd factor significantly decrease with age in female. 5. There are four clusters selected by fastcluster in every age group. The characteristics of four clusters of every age group are different significantly.

  • PDF

Flexural Test for a Monolithic Holed Web Prestressed Concrete (HWPC) Girder

  • Han, Man-Yop;Jin, Kyung-Suk;Choi, Sok-Hwan
    • International Journal of Concrete Structures and Materials
    • /
    • v.4 no.2
    • /
    • pp.77-87
    • /
    • 2010
  • Prestressed concrete (PSC) I-type girders have been used for span length around up to 40 m in domestic region. PSC girders are very cost effective girder type and extending their lengths more than 50 m will bring large benefit in cost. A new design method was proposed by combining two notable design concept in order to extend the applicable span length in this study. First of all, several numbers of openings was introduced in the girder web, and half of the anchorage devices were moved into the openings. In this way, large compressive stress developed at end zone was reduced, and the portion of design load coming from self-weight was reduced as well. Secondly, prestressing force was introduced in the girder not once at the initial stage, but through multiple loading stages. A full scale girder with the length of 50 m with the girder depth of 2 m was fabricated, and a flexural test was conducted in order to verify the performance of newly developed girder. Test results showed that the new holed web design concept can provide a way to design girders longer than 50 meters with the girder height of 2 m.

Seabed Liquefaction with Reduction of Soil Strength due to Cyclic Wave Excitation

  • Choi, Byoung-Yeol;Lee, Sang-Gil;Kim, Jin-Kwang;Oh, Jin-Soo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This study introduces the case of pipelines installed in subsea conditions and buried offshore. Such installations generate pore water pressure under the seabed because of cyclic wave excitation, which is an environmental load, and consistent cyclic wave loading that reduce the soil shear strength of the seabed, possibly leading to liquefaction. Therefore, in view of the liquefaction of the seabed, stability of the subsea pipelines should be examined via calculations using a simple method for buried subsea pipelines and floating structures. Particularly, for studying the possible liquefaction of the seabed in regard to subsea pipelines, high waves of a 10- and 100-year period and the number of occurrences that are affected by the environment within a division cycle of 90 s should be applied. However, when applying significant wave heights (HS), the number of occurrences within a division cycle of 3 h are required to be considered. Furthermore, to research whether dynamic vertical load affect the seabed, mostly a linear wave is used; this is particularly necessary to apply for considering the liquefaction of the seabed in the case of pile structure or subsea pipeline installation.

The High Rate Denitrification of Nitric Acid Wastewater in a Fluidized Bed Biofilm Reactor (유동층 생물막 반응기를 이용한 고농도 질산성 폐수의 탈질화에 관한 연구)

  • 신승훈;김민수;박동일;안재동;장인용
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.1
    • /
    • pp.95-104
    • /
    • 1997
  • The objectives of this study are to investigate the effect of media on the removal efficiency of nitrate-nitrogen and the biofilm thickness in the fluidized bed biofilm reactor(FBBR) used for the high rate denitrification of nitric acid wastewater. Granular activated carbon(GAC) of 1.274 mm diameter and sand of 0.455 mm diameter were used as the media in the FBBR of 0.05 m diameter and 1.5 m height. As the nitrate-nitrogen concentration of the influent was increased stepwise from 600 to 4800 mg/l, the nitrate- and nitrite-nitrogen concentration of the effluent, biofilm thickness and biofilm dry density were measured to study the effects of media on the denitrification efficiency. The biofilm thickness increased with the substrate loading rate, and the biofilm dry density decreased with the increase of the biofilm thickness. At the influent nitrate-nitrogen concentration of 2400 mg/l, the removal efficiency in the FBBR with GAC was 88%, while that in the FBBR with sand was 99.6%. The biofilm in the FBBR with GAC was so thick, 754.9 $\mu$m, as to increase the mass transfer resistance, compared to that, 143.7 $\mu$m, in the FBBR with sand. The maximum specific denitrification rate in the FBBR with GAC was 15.0 kg-N/m$^3\cdot$ day, while that in the FBBR with sand was 18.0 kg-N/m$^3\cdot$ day. The biomass concentration in the FBBR with sand exhibited the high value 37 kg/m$^3$.

  • PDF

Reflectivity Improvement by Particle Neutralization in a Charged Particle-Type Electronic Display

  • Kim, Young-Cho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.14 no.1
    • /
    • pp.36-38
    • /
    • 2013
  • Eight sample panels using an indium tin oxide(ITO)-coated glass substrate were fabricated, with barrier ribs formed of 55 ${\mu}m$ height and 10 ${\mu}m$ width. The upper and lower substrates were designed with the same panel condition, so a cell gap of 110 ${\mu}m$ was obtained. The charged particles in a cell consisted of $TiO_2$ (for white color) or carbon black (black color), negative or positive charge control agents, and a polymer. The average diameter of the two types of particles was commonly 10 ${\mu}m$, and their q/m value was -4.5 ${\mu}C/g$ and +4.5 ${\mu}C/g$, respectively. The electrically opposite particles mixed by an agitator were loaded into their cells by a simple particle-loading method. The discharging process proceeded at a humidity of 80% and a temperature of $30^{\circ}C$. Reflectivity was measured depending on discharging time, and a hysteresis curve by bias voltage obtained for comparison between the neutralized and non-neutralized panel, in which the superior optical property of the neutralized panel was ascertained.