• Title/Summary/Keyword: loading height

Search Result 518, Processing Time 0.031 seconds

The Comparative Analysis on Mechanical Property Test of Carbon Nanotube-based Shock Absorbers (탄소나노튜브를 기반으로 하는 충격흡수제의 물리적 특성 비교분석)

  • Kim, Jong-Woo;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.2
    • /
    • pp.237-242
    • /
    • 2012
  • The purpose of this study was (a) to develop carbon nanotube-based shock absorbers for reducing potentially harmful impact forces and excessive foot pronation, and (b) to briefly determine how the effects of carbon nanotube-based shock absorbers on biomechanical variance during drop landing. A university student(age: 24.0 yrs, height: 176.2 cm, weight: 679.5 N) who has no musculoskeletal disorder was recruited as the subject. Hardness, specific gravity, tensile strength, elongation, 100% modulus, tear strength, split tear strength, compression set, resilience, vertical GRF, and loading rate were determined for each material. For each dependent variable, a descriptive statistics was used for different conditions. The property test results showed that tensile strength, tear strength, split tear strength, compression set, and resilience in carbon nanotube-based shock absorbers were greater than general Ethylene Vinyl Acetate(EVA). These indicated that resistance against variable strength in developed carbon nanotube-based shock absorbers were greater than general EVA. In vertical GRF of CNTC was less than those of EVA during drop landing and loading rate of CNTC was greater than EVA. It seems that the use of CNT can be a effective way of reducing and controlling shock from impact.

Hydrogen production by catalytic decomposition of propane over carbon black catalyst in a fluidized bed (유동층 반응기에서 카본블랙 촉매를 이용한 프로판의 촉매 분해에 의한 수소생산 연구)

  • Yoon, Yong-Hee;Lee, Seung-Chul;Han, Gui-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.81-85
    • /
    • 2007
  • A fluidized bed reactor is made with quartz. The size of FBR is 0.055 m I.D. and 1.0 m in height. The FBR was employed for the thermocatalytic decomposition of propane to produce hydrogen without $CO_{2}$. The fluidized bed was proposed for the continuous withdraw of product carbons from the reactor. Carbon black DCC-N330 is used to decompose the propane gas. The propane decomposition reaction over carbon black catalyst in a fluidized bed reactor was carried out the temperature range of 600 ${\sim}$ 800 $^{\circ}C$, propane gas velocity of 1.0 ${\sim}$ 4.0$U_{mf}$($1U_{mf}$ = 0.61cm/s) and the catalyst loading of 100 ${\sim}$ 200g. Production of $H_{2}$ such as other reaction temperature, gas velocity, catalytic loading on the reaction rates was investigated. The carbon depositied on the catalyst surface was observed by FE-SEM. The particle size of the carbon black was observed by Particle size analyzer. Resulting production in the experiment was not only hydrogen but also several by-products such as methane, ethylene, ethane, and propylene.

  • PDF

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

Application of Environmentally friendly block for the slope stability and protection of Rural Housing (농가주택 법면 보호공을 위한 환경친화블럭의 적용성 평가)

  • Shin, Bangwoong;Oh, Sewook;Kwon, Youngcheul;Cho, Cheonhee;Han, Hyungu
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.2 no.1
    • /
    • pp.101-112
    • /
    • 2000
  • Green environment is most important factor to human being taking a side view of psychological aspect. But, as the civilization progresses rapidly, the green environment decreases. At present, various environmentally friendly methods are developed to prevent the ill effect of the concretes. n this study, Ecostone retaining wall method, which is a kind of environmentally friendly block, are used for verifying the application to the slope stability and protection of rural hosing. In case of rural hosing and structure, the height of the slope is not high and additional loading doesn't act on the slope except the gravity loading of housing and structure. From the result of the stability analysis of Ecostone, 3m to 7m Ecostone retaining wall can have an equivalence capacity comparing with the concrete retaining wall. Therefore, Ecostone method can apply to retaining wall with the structural safety and environmentally friendly aspect using the plants and vegetation.

  • PDF

Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Su, Yisheng
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.681-701
    • /
    • 2016
  • This paper presents an experimental study of six steel reinforced high strength concrete T-shaped short-limb shear walls configured with T-shaped steel truss under low cyclic reversed loading. Considering different categories of ratios of wall limb height to thickness, shear/span ratios, axial compression ratios and stirrup reinforcement ratios were selected to investigate the seismic behavior (strength, stiffness, energy dissipation capacity, ductility and deformation characteristics) of all the specimens. Two different failure modes were observed during the tests, including the flexural-shear failure for specimens with large shear/span ratio and the shear-diagonal compressive failure for specimens with small shear/span ratio. On the basis of requirement of Chinese seismic code, the deformation performance for all the specimens could not meet the level of 'three' fortification goals. Recommendations for improving the structural deformation capacity of T-shaped steel reinforced high strength concrete short-limb shear wall were proposed. Based on the experimental observations, the mechanical analysis models for concrete cracking strength and shear strength were derived using the equivalence principle and superposition theory, respectively. As a result, the proposed method in this paper was verified by the test results, and the experimental results agreed well with the proposed model.

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Seismic Performance of RC Circular Colunm-Bent Piers under Bidirectional Repeated Loadings according to Main Loading Direction (2축 반복하중을 받는 2주형 RC 원형교각의 주하중방향에 따른 내진성능평가)

  • Park, Chang-Kyu;Lee, Beom-Gi;Yun, Sang-Cheol;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.284-291
    • /
    • 2005
  • A RC column-bent pier represents one of the most popular piers used in highway bridges. Seismic performance of reinforced concrete (RC) column-bent piers under bidirectional seismic loadings was experimentally investigated. Six column bent-piers were constructed with two circular supporting columns which were made in 400mm diameter and 2,000mm height. Test parameters are different transverse reinforcement and loading pattern. These piers were tested under lateral load reversals with the axial load of $0.1f_{ck}A_g$. Three specimens were subjected to bidirectional lateral load cycles which consisted of two main longitudinal loads and two sub transverse loads in one load cycle. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter three specimens were generally bigger than those of the former three specimens. Plastic hinges were formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom plastic hinge of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF

Analysis on Current and Optical Characteristics by Electronic Ink Loading Method in Charged Particles Type Display (대전입자형 디스플레이에서 전자 잉크 주입 방법에 따른 전류 및 광특성 분석)

  • An, Hyeong-Jin;Kim, Young-cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.123-129
    • /
    • 2020
  • We analyzed the drift current by charged particles according to the loading methods applied into a closed cell by electronic ink at a reflective-type display panel using an electrophoretic mechanism. For this experiment, various panels were fabricated with injection voltages for electronic ink taking values in the range -4~0 V. The size of each cell was 220 ㎛ × 220 ㎛ and height of the barrier rib was 54.28 ㎛. The electronic ink was fabricated by mixing electrically neutral fluid and single-charge white particles. Drift current was measured by moving charged particles. A biasing voltage of 6 V was applied to the display panel. As a result, the drift current was proportional to the injection voltage for electronic ink, but it decreased in case of an injection voltage above -3 V. Our experimentation ascertained that the concentration of charged particles injected into closed cells is controlled by the injection voltage and the selective injection of charged particles above movable q/m is possible.

Experimental analysis of whiplash injury with hybrid III 50 percentile test dummy

  • Gocmen, Ulas;Gokler, Mustafa Ilhan
    • Advances in Automotive Engineering
    • /
    • v.1 no.1
    • /
    • pp.61-77
    • /
    • 2018
  • In this study, the effects of sitting position of the driver on the whiplash neck injury have been analyzed experimentally by using hybrid III series 50 percentile male crash test dummy. A testing platform consisting of vehicle ground, driver foot rest, driver seat and a 3-point seatbelt has been prepared. This testing platform and the instrumented crash test dummy are prepared for tests according to the Euro NCAP whiplash testing protocol. The prepared test set-up has been exposed to 3 different acceleration-time loading curves defined in the Euro NCAP whiplash testing protocol by performing sled tests. 9 different sled tests have been performed with the combinations of 3 different seating positions of the crash test dummy and 3 different acceleration-time loading curves. The sensor data obtained from the crash test dummy and high-speed videos taken are analyzed according to the injury assessments criteria defined in the Euro NCAP whiplash testing protocol and the criticality of the whiplash injury is defined. It is seen that the backset distance of the driver head with the headrest and the height difference of the top of the head of the driver with the headrest have a great importance on whiplash injuries.

A study of aerodynamic pressures on elevated houses

  • Abdelfatah, Nourhan;Elawady, Amal;Irwin, Peter;Chowdhury, Arindam
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.335-350
    • /
    • 2020
  • In coastal residential communities, especially along the coastline, flooding is a frequent natural hazard that impacts the area. To reduce the adverse effects of flooding, it is recommended to elevate coastal buildings to a certain safe level. However, post storm damage assessment has revealed severe damages sustained by elevated buildings' components such as roofs, walls, and floors. By elevating a structure and creating air gap underneath the floor, the wind velocity increases and the aerodynamics change. This results in varying wind loading and pressure distribution that are different from their slab on grade counterparts. To fill the current knowledge gap, a large-scale aerodynamic wind testing was conducted at the Wall of Wind experimental facility to evaluate the wind pressure distribution over the surfaces of a low-rise gable roof single-story elevated house. The study considered three different stilt heights. This paper presents the observed changes in local and area averaged peak pressure coefficients for the building surfaces of the studied cases. The aerodynamics of the elevated structures are explained. Comparisons are done with ASCE 7-16 and AS/NZS 1170.2 wind loading standards. For the floor surface, the study suggests a wind pressure zoning and pressure coefficients for each stilt height.