• Title/Summary/Keyword: loading frame

Search Result 584, Processing Time 0.028 seconds

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.

Vibration Fatigue for the Bogie frame of the Rubber Wheel AGT (고무차륜형 AGT 주행장치의 진동피로해석)

  • 유형선;윤성호;변상윤;편수범
    • Journal of the Korean Society for Railway
    • /
    • v.3 no.3
    • /
    • pp.117-124
    • /
    • 2000
  • The rubber wheel-type AGT has two major kinds of bogie; one is the bogie type and the other steering one. Both are important vehicular structure to support the whole running vehicle and passenger loads. This paper deals with the static analysis for the two types of bogie frame subjected to combined external forces, as well as independent ones specified in UIC 515-4. Furthermore, the dynamic analysis is performed under vibrational loading conditions so as to compare dynamic characteristics, Numerical results by using commercial packages, I-DEAS and NASTRAN show that maximum stresses do not exceed the yield strength level of material used for both bogies. From an overall viewpoint of strength, the bogie type turns out to be superior to the steering type except for the case of a lateral loading. It is also observed that the steering type shows a characteristics of low frequency behavior during a course of searching for structurally weak areas to be stiffened. The vibrational fatigue analysis for each bogie frame depends on the loading time history conditions which is applied. Time History Central Database List in the NASTRAN package. Subsequent1y, the fatigue life of bogie type is longer than the steering type.

  • PDF

The Fatigue life evaluation and load history measurement for Bogie frame of locomotive (디젤기관차 대차프레임의 하중이력 측정 및 피로수명평가)

  • Seo, Jung-Won;Kwon, Suck-Jin;Ham, Young-Sam;Kwon, Sung-Tae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.378-383
    • /
    • 2008
  • Bogie frame of the locomotive is an important structural member for the support of vehicle loading. A lot of study has been carried out for the prediction of the structural integrity of the bogie frame in experimental and theoretical domains. The objective of this paper is to estimate the structural integrity of the bogie frame. Strength analysis has been performed by finite element analysis. From these analysis, stress concentration areas were investigated. For evaluation of the loading conditions, dynamic stress were measured by using strain gage. It has been found that the stress and strain due to the applied loads were multi-axial condition according to the location of strain gage. The fatigue strength evaluations of the bogie frame are performed to investigate the effect of the multi-axial load through the employment of the critical plane approach.

  • PDF

Inelastic two-degree-of-freedom model for roof frame under airblast loading

  • Park, Jong Yil;Krauthammer, Theodor
    • Structural Engineering and Mechanics
    • /
    • v.32 no.2
    • /
    • pp.321-335
    • /
    • 2009
  • When a roof frame is subjected to the airblast loading, the conventional way to analyze the damage of the frame or design the frame is to use single degree of freedom (SDOF) model. Although a roof frame consists of beams and girders, a typical SDOF analysis can be conducted only separately for each component. Thus, the rigid body motion of beams by deflections of supporting girders can not be easily considered. Neglecting the beam-girder interaction in the SDOF analysis may cause serious inaccuracies in the response values in both Pressure-Impulse curve (P-I) and Charge Weight-Standoff Diagrams (CWSD). In this paper, an inelastic two degrees of freedom (TDOF) model is developed, based on force equilibrium equations, to consider beam-girder interaction, and to assess if the modified SDOF analysis can be a reasonable design approach.

Transverse Analysis of Prestressed Concrete Box Girder High-Speed Railway Bridges (고속전철 PSC 박스거더 교량의 횡방향 해석)

  • 김병석;김영진;박성용
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.47-53
    • /
    • 1998
  • Many kinds of methods have been developed to carry out transverse analysis of prestressed concrete(PSC) box girder bridges. However, most bridge engineers only use the simple frame model to analyze PSC box girder in transverse direction because of its simplicity and easy usage. But, this frame model has many problems such that it can't consider warping, distortion and longitudinal load distribution. In this study, the results from simple frame model and 3-dimensional shell model with UIC load are compared to show its validity. The results from frame model are slightly larger than those of shell model in symmetric loading case. But, positive bending moment of top slab is larger in shell model than frame model in case subject to anti-symmetric loading. It shows that simple frame model can't always give conservative results, so a practical tool whose treatment is easy and whose product is reliable shall be developed as soon as possible.

  • PDF

Coupled testing-modeling approach to ultimate state computation of steel structure with connections for statics and dynamics

  • Imamovic, Ismar;Ibrahimbegovic, Adnan;Mesic, Esad
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.555-581
    • /
    • 2018
  • The moment-resistant steel frames are frequently used as a load-bearing structure of buildings. Global response of a moment-resistant frame structure strongly depends on connections behavior, which can significantly influence the response and load-bearing capacity of a steel frame structure. The analysis of a steel frame with included joints behavior is the main focus of this work. In particular, we analyze the behavior of two connection types through experimental tests, and we propose numerical beam model capable of representing connection behavior. The six experimental tests, under monotonic and cyclic loading, are performed for two different types of structural connections: end plate connection with an extended plate and end plate connection. The proposed damage-plasticity model of Reissner beam is able to capture both hardening and softening response under monotonic and cyclic loading. This model has 18 constitutive parameters, whose identification requires an elaborate procedure, which we illustrate in this work. We also present appropriate loading program and arrangement of measuring equipment, which is crucial for successful identification of constitutive parameters. Finally, throughout several practical examples, we illustrate that the steel structure connections are very important for correct prediction of the global steel frame structure response.

Structural Behavior of Reinforced Concrete Slab Rigid-frame Bridge with H-Shaped Steel Girders

  • Nakai, Yoshiaki;Ha, Tuan Minh;Fukada, Saiji
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1219-1241
    • /
    • 2018
  • This study aims towards the improvement of a reinforced concrete rigid-frame bridge in an effort to reduce the construction and maintenance costs, and achieve an improved seismic performance. Correspondingly, a new structural rigid connection is proposed for H-shaped steel girders and reinforcing bars at the corner of the rigid-frame structure. Both experiments and numerical analyses were performed. Prototype models were constructed and subjected to static loading tests to reveal their load-carrying capacity and failure mode. Numerical models were then developed using finite elements to evaluate the experimental results. Analyses elicited good agreement between simulation and experimental data and validated the numerical models. Moreover, the validity of the proposed rigid connection was confirmed, and the failure behavior was clarified. Finally, a full-size model of the reinforced concrete rigid-frame bridge with H-shaped steel girders was constructed and subjected to destructive loading tests to evaluate structural integrity of the proposed rigid connection.

RCC frames with ferrocement and fiber reinforced concrete infill panels under reverse cyclic loading

  • Ganesan, N.;Indira, P.V.;Irshad, P.
    • Advances in concrete construction
    • /
    • v.5 no.3
    • /
    • pp.257-270
    • /
    • 2017
  • An experimental investigation was carried out to study the strength and behavior of reinforced cement concrete (RCC) frames with ferrocement and fiber reinforced concrete infill panel. Seven numbers of $1/4^{th}$ scaled down model of one bay-three storey frames were tested under reverse cyclic loading. Ferrocement infilled frames and fiber reinforced concrete infilled frames with varying volume fraction of reinforcement in infill panels viz; 0.20%, 0.30%, and 0.40% were tested and compared with the bare frame. The experimental results indicate that the strength, stiffness and energy dissipation capacity of infilled frames were considerably improved when compared with the bare frame. In the case of infilled frames with equal volume fraction of reinforcement in infill panels, the strength and stiffness of frames with fiber reinforced concrete infill panels were slightly higher than those with ferrocement infill panels. Increase in volume fraction of reinforcement in the infill panels exhibited only marginal improvement in the strength and behavior of the infilled frames.

A Study on the Multiaxial Fatigue Analysis of Bogie Frame for High Speed Train (고속전철용 대차프레임의 다축피로해석에 관한 연구)

  • 이상록;이학주;한승우;강재윤
    • Proceedings of the KSR Conference
    • /
    • 1999.05a
    • /
    • pp.344-351
    • /
    • 1999
  • Stress analysis of bogie frame by using the finite element method has been performed for the various loading conditions according to the UIC (International Union of Railways) Code 615-4. Multiaxial fatigue damage models such as signed von Mises method and typical critical plane theories were reviewed, and multiaxial fatigue analysis program (MUFAP) has been developed. Fatigue analysis of bogie frame under multiaxial loading was performed by using MUFAP and finite element analysis results. The procedure developed in this study is considered to be useful for the life prediction in preliminary design stage of railway components under multiaxial loading conditions. 3-dimensional surface modeling, mesh generation and finite element analysis were performed by Pro-Engineer, MSC/PATRAN and MSC/NASTRAN, respectively, which were installed in engineering workstation.

  • PDF

Numerical investigation of cyclic performance of frames equipped with tube-in-tube buckling restrained braces

  • Maalek, Shahrokh;Heidary-Torkamani, Hamid;Pirooz, Moharram Dolatshahi;Naeeini, Seyed Taghi Omid
    • Steel and Composite Structures
    • /
    • v.30 no.3
    • /
    • pp.201-215
    • /
    • 2019
  • In this research, the behavior of tube-in-tube BRBs (TiTBRBs) has been investigated. In a typical TiTBRB, the yielding core tube is located inside the outer restraining one to dissipate energy through extensive plastic deformation, while the outer restraining tube remains essentially elastic. With the aid of FE analyses, the monotonic and cyclic behavior of the proposed TiTBRBs have been studied as individual brace elements. Subsequently, a detailed finite element model of a representative single span-single story frame equipped with such a TiTBRB has been constructed and both monotonic and cyclic behavior of the proposed TiTBRBs have been explored under the application of the AISC loading protocol at the braced frame level. With the aid of backbone curves derived from the FE analyses, a simplified frame model has been developed and verified through comparison with the results of the detailed FE model. It has been shown that, the simplified model is capable of predicting closely the cyclic behavior of the TiTBRB frame and hence can be used for design purposes. Considering type of connection detail used in a frame, the TiTBRB member which behave satisfactorily at the brace element level under cyclic loading conditions, may suffer global buckling due to the flexural demand exerted from the frame to the brace member at its ends. The proposed TiTBRB suit tubular members of offshore structures and the application of such TiTBRB in a typical offshore platform has been introduced and studied in a single frame level using detailed FE model.