• Title/Summary/Keyword: loading frame

Search Result 584, Processing Time 0.025 seconds

Investigation of Seismic Performance of RC Wall-Slab Frames with Masonry Infill (조적채움벽을 갖는 RC 벽-슬래브 골조의 내진성능 연구)

  • Kim, Chan Ho;Lee, Seung Jae;Heo, Seok Jae;Eom, Tae Sung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.137-147
    • /
    • 2022
  • This study investigated the seismic performance of reinforced concrete (RC) wall-slab frames with masonry infills. Four RC wall-slab frames with or without masonry infill were tested under cyclic loading. The RC frames were composed of in-plane and out-of-plane walls and top and bottom slabs. For masonry infill walls, cement bricks were stacked applying mortar paste only at the bed joints, and, at the top, a gap of 50 mm was intentionally left between the masonry wall and top RC slab. Both sides of the masonry walls were finished by applying ordinary or fiber-reinforced mortars. The tests showed that despite the gap on top of the masonry walls, the strength and stiffness of the infilled frames were significantly increased and were different depending on the direction of loading and the finishing mortars. During repeated loading, the masonry walls underwent horizontal and diagonal cracking and corner crushing/spalling, showing a rocking mode inside the RC wall-slab frame. Interestingly, this rocking mode delayed loss of strength, and as a result, the ductility of the infilled frames increased to the same level as the bare frame. The interaction of masonry infill and adjacent RC walls, depending on the direction of loading, was further investigated based on test observations.

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Structural behavior of inverted V-braced frames reinforced with non-welded buckling restrained braces

  • Kim, Sun-Hee;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1581-1598
    • /
    • 2015
  • A concentric braced steel frame is a very efficient structural system because it requires relatively smaller amount of materials to resist lateral forces. However, primarily developed as a structural system to resist wind loads based on an assumption that the structure behaves elastically, a concentric braced frame possibly experiences the deterioration in energy dissipation after brace buckling and the brittle failure of braces and connections when earthquake loads cause inelastic behavior. Consequently, plastic deformation is concentrated in the floor where brace buckling occurs first, which can lead to the rupture of the structure. This study suggests reinforcing H-shaped braces with non-welded cold-formed stiffeners to restrain flexure and buckling and resist tensile force and compressive force equally. Weak-axis reinforcing members (2 pieces) developed from those suggested in previous studies (4 pieces) were used to reinforce the H-shaped braces in an inverted V-type braced frame. Monotonic loading tests, finite element analysis and cyclic loading tests were carried out to evaluate the structural performance of the reinforced braces and frames. The reinforced braces satisfied the AISC requirement. The reinforcement suggested in this study is expected to prevent the rupture of beams caused by the unbalanced resistance of the braces.

Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers (다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험)

  • Roh, Ji Eun;Heo, Seok Jae;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

Structural health monitoring of seismically vulnerable RC frames under lateral cyclic loading

  • Chalioris, Constantin E.;Voutetaki, Maristella E.;Liolios, Angelos A.
    • Earthquakes and Structures
    • /
    • v.19 no.1
    • /
    • pp.29-44
    • /
    • 2020
  • The effectiveness and the sensitivity of a Wireless impedance/Admittance Monitoring System (WiAMS) for the prompt damage diagnosis of two single-storey single-span Reinforced Concrete (RC) frames under cyclic loading is experimentally investigated. The geometrical and the reinforcement characteristics of the RC structural members of the frames represent typical old RC frame structure without consideration of seismic design criteria. The columns of the frames are vulnerable to shear failure under lateral load due to their low height-to-depth ratio and insufficient transverse reinforcement. The proposed Structural Health Monitoring (SHM) system comprises of specially manufactured autonomous portable devices that acquire the in-situ voltage frequency responses of a network of twenty piezoelectric transducers mounted to the RC frames. Measurements of external and internal small-sized piezoelectric patches are utilized for damage localization and assessment at various and increased damage levels as the magnitude of the imposed lateral cycle deformations increases. A bare RC frame and a strengthened one using a pair of steel crossed tension-ties (X-bracing) have been tested in order to check the sensitivity of the developed WiAMS in different structural conditions since crack propagation, damage locations and failure mode of the examined frames vary. Indeed, the imposed loading caused brittle shear failure to the column of the bare frame and the formation of plastic hinges at the beam ends of the X-braced frame. Test results highlighted the ability of the proposed SHM to identify incipient damages due to concrete cracking and steel yielding since promising early indication of the forthcoming critical failures before any visible sign has been obtained.

An Assessment Study of Seismic Resistance of Two-story Wood-frame Housing by Shaking Table Tests

  • Ni, Chun;Kim, Sang-Yeon;Chen, Haijiang;Lu, Xilin
    • Land and Housing Review
    • /
    • v.3 no.1
    • /
    • pp.79-82
    • /
    • 2012
  • While there exists a relatively large body of technical information for the engineered design of wood-frame buildings to resist seismic ground motions, the quantitative assessment of seismic resistance of conventional houses built by prescriptive requirements is less well understood. Forintek Canada Corp., in collaboration with other research and industry partners, has embarked on a research project to address this topic. This paper will report on the seismic shake table tests of a full-scale wood-frame building. The two-story specimen, $6m{\times}6m$ in plan, was built on the seismic shake table at Tongji University in Shanghai, China, according to Part 9 of the 1995 National Building Code of Canada and shaken uni-directionally in each of the two principal directions. Three different seismic table motions were applied at increasing peak ground motion amplitudes up to 0.40 and 0.50 g. The specimen was repaired after the above sets of seismic table motions, and successive runs were conducted for increased door openings. Measurements included specimen accelerations, displacements and anchorage forces. Static stiffness of the specimen was measured at low force levels, and natural frequencies were measured after each seismic loading stage by applying low-level random excitation. The results presented consist of the capacity spectra of the shake table tests, changes in specimen stiffness and natural frequencies with increasing seismic loading. These results and those from other recent shake table tests elsewhere will be compared with simplified engineering calculations based on codified values of strength, and on that basis preliminary conclusions will be drawn on the adequacy of the current code provisions and design guides in Canada and the USA for conventional wood-frame construction.

Advanced analysis of cyclic behaviour of plane steel frames with semi-rigid connections

  • Saravanan, M.;Arul Jayachandran, S.;Marimuthu, V.;Prabha, P.
    • Steel and Composite Structures
    • /
    • v.9 no.4
    • /
    • pp.381-395
    • /
    • 2009
  • This paper presents the details of an advanced Finite Element (FE) analysis of a plane steel portal frame with semi-rigid beam-to-column connections subjected cyclic loading. In spite of several component models on cyclic behaviour of connections presented in the literature, works on numerical investigations on cyclic behaviour of full scale frames are rather scarce. This paper presents the evolution of an FE model which deals comprehensively with the issues related to cyclic behaviour of full scale steel frames using ABAQUS software. In the material modeling, combined kinematic/isotropic hardening model and isotropic hardening model along with Von Mises criteria are used. Connection non-linearity is also considered in the analysis. The bolt slip which happens in friction grip connection is modeled. The bolt load variation during loading, which is a pivotal issue in reality, has been taken care in the present model. This aspect, according to the knowledge of the authors, has been first time reported in the literature. The numerically predicted results using the methodology evolved in the present study, for the cyclic behaviour of a cantilever beam and a rigid frame, are validated with experimental results available in the literature. The moment-rotation and deflection responses of the evolved model, match well with experimental results. This proves that the methodology for evolving the steel frame and connection model presented in this paper is closer to real frame behaviour as evident from the good comparison and hence paves the way for further parametric studies on cyclic behaviour of flexibly connected frames.

Reinforcement for Fatigue Fracture of Welded Bogie Frames (용접형 대차 프레임의 피로강도 보강에 관한 연구)

  • Jang, Deuk-Yul;Jeon, Hyung-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.145-151
    • /
    • 2016
  • We consider the position and thickness of reinforcement with respect to fatigue fracture of welded bogie frames and propose an appropriate reinforcement method for many cases. The bogie frame is usually designed in accordance with JIS and KS, and operates under harsh load conditions: dynamic loads generated while driving, various loads during operation, and large load differences between loading and unloading. Consequently, fatigue failure often occurs throughout the bogie frame. We modelled the reinforcing method using ANSYS software and reviewed stress in the vicinity of common fatigue failure sites through computer simulation, optimizing the position and thickness of reinforcement.

Behavior of FRP strengthened RC brick in-filled frames subjected to cyclic loading

  • Singh, Balvir;Chidambaram, R. Siva;Sharma, Shruti;Kwatra, Naveen
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.557-566
    • /
    • 2017
  • Fiber reinforced polymer (FRP) sheets are the most efficient structural materials in terms of strength to weight ratio and its application in strengthening and retrofitting of a structure or structural elements are inevitable. The performance enhancement of structural elements without increasing the cross sectional area and flexible nature are the major advantages of FRP in retrofitting/strengthening work. This research article presents a detailed study on the inelastic response of conventional and retrofitted Reinforced Concrete (RC) frames using Carbon Fibre Reinforced Polymers (CFRP) and Glass Fiber Reinforced Polymers (GFRP) subjected to quasi-static loading. The hysteretic behaviour, stiffness degradation, energy dissipation and damage index are the parameters employed to analyse the efficacy of FRP strengthening of brick in-filled RC frames. Repair and retrofitting of brick infilled RC frame shows an improved load carrying and damage tolerance capacity than control frame.