• 제목/요약/키워드: loading capability

검색결과 242건 처리시간 0.025초

CH-90 용접봉을 이용한 육성 용접부의 마모 특성에 관한 연구 (Wear characteristics of build-up weld metal using CH-90 Electrode)

  • 이보영;안대환;김재성;진형국
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.225-227
    • /
    • 2006
  • As rail steel at a crossing area must undergo much higher loading than those at regular railway, Mn-alloyed steel is normally used for its high load-carrying capability and reduced wear rate. However, as these Mn-alloyed steel is tend to have casting defects, manufacturing cost to produce defect-free Mn-alloyed steel becomes quite expensive. Therefore, in order to replace Mn-alloyed steel, we performed build-up welding using CH-90 and investigated regarding to wear characteristics of build-up weld metal.

  • PDF

Crack source location by acoustic emission monitoring method in RC strips during in-situ load test

  • Shokri, Tala;Nanni, Antonio
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.155-171
    • /
    • 2014
  • Various monitoring techniques are now available for structural health monitoring and Acoustic Emission (AE) is one of them. One of the major advantages of the AE technique is its capability to locate active cracks in structural members. AE crack locating approaches are affected by the signal attenuation and dispersion of elastic waves due to inhomogeneity and geometry of reinforced concrete (RC) members. In this paper, a novel technique is described based on signal processing and sensor arrangement to process multisensory AE data generated by the onset and propagation of cracks and is validated with experimental results from an in-situ load test. Considering the sources of uncertainty in the AE crack location process, a methodology is proposed to capture and locate events generated by cracks. In particular, the relationship between AE events and load is analyzed, and the feasibility of using the AE technique to evaluate the cracking behavior of two RC slab strips during loading to failure is studied.

전단연결부 형상에 따른 분절부재의 전단내하력에 대한 실험적 연구 (An experimental study for shear loading capacity of segmental members depending on various types of shear connector)

  • 한만엽;강태헌;신재우;진경석;강상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.158-161
    • /
    • 2006
  • The numerical analysis and the experiment was performed to investigate the influences of shear connector on shear resistance capability. The numerical analysis's results should that the H/B ratio of shear key is more effective than angle of shear key against shear strength and shear behavior, and it is more desirable to use a half of the H/B ratio of shear key. The specimen was made with same condition as AASHTO recommended. There model tests were performed under various form of shear key, number, arrangement reinforcement and condition using epoxy. As a result of the experiment, there is little difference(or there is no difference) between the case of using epoxy on shear connector and the unused case.

  • PDF

A Preliminary Structural Design Study on High Performance Container Crane

  • Kim, Ki-Sung;Hong, Ki-Sup;Tae, Jae-Cheol
    • Journal of Ship and Ocean Technology
    • /
    • 제11권4호
    • /
    • pp.1-20
    • /
    • 2007
  • After the introduction of the World Trade Organization, large scale container ships are being used as a means of transportation for international trade. Therefore, improving the loading and unloading capability of container quays is the most economic way, considering the cost needed for the establishment or expansion of container quays. In this paper, a new container cargo handing system that is equipped with a high performance container crane is suggested. A structural analysis on the container crane is also conducted to decide the form and size of structural member scantlings, using NASTRAN, which is a general structure analysis program.

현장탄성파시험을 이용한 강화노반의 시간적 강성 변화 (Temporal Variations of Reinforced Roadbed Stiffness Using In-situ Seismic Tests)

  • 목영진;박철수;임정열;최충락
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.404-411
    • /
    • 2007
  • Reinforced roadbeds are valued from the point of view of maintenance as well as enhanced mechanical capacity. They support more train load and less transmit to the sub-layers than general roadbeds. Also, the lateral sloping surface of the reinforced roadbed and its low permeability, achieved by the controlled compaction, increase drainage capability and prevent the softening of sub-layers. In the study, a series of cross-hole tests was performed to observe the temporal changes in the stiffness of reinforced roadbeds, if any, due to the cyclic loading of trains and alternating rainy and frozen seasons at Pyeong-taek experimental site. The three types of reinforced roadbed materials are slag, crushed stones, and soils, and the thickness of all the reinforced roadbeds is 0.8m. The stiffness of the slag and soil reinforced roadbeds was not changed or slightly decreased. The stiffness of the crushed stone was somewhat increased and is inferred to being densified close to surface.

  • PDF

변형률속도에 따른 고강도 강판의 이방성 변화에 관한 연구 (Effect of Strain Rate on the Anisotropic Deformation Behavior of Advanced High Strength Steel Sheets)

  • 허지향;허훈;이창수
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.595-600
    • /
    • 2011
  • This paper investigates the effect of strain rate on the anisotropic deformation behavior of advanced high strength steel sheets. Uniaxial tensile tests were carried out on TRIP590 and DP780 steel sheets at strain rates ranging from 0.001/sec to 100/sec to determine yield stresses and r-values at various loading angles from the reference rolling direction. R-values were determined by the digital image correlation technique. Hill48 and Yld2000-2d yield functions were tested for their capability to describe the plastic deformation anisotropy of the materials. Initial yield loci were constructed using the Yld2000-2d yield function, which adequately described the anisotropic behavior of the materials. The shape of the initial yield loci was found to change with different strain rate, and the anisotropic behavior decreased with increasing strain rate.

신발 설계 및 평가를 위한 컴퓨터 모델 (REVIEW OF COMPUTATIONAL MODELS FOR FOOTWEAR DESIGN AND EVALUATION)

  • Cheung, Jason Tak-Man;Yu, Jia;Zhang, Ming
    • 한국운동역학회지
    • /
    • 제19권1호
    • /
    • pp.13-25
    • /
    • 2009
  • Existing footwear biomechanics studies rely on simplified kinetics and kinematics, plantar pressure and muscle electromyography measurements. Because of the complexity of foot-shoe interface and individualized subject response with different footwear, consistent results regarding the biomechanical performance of footwear or footwear components can yet be achieved. The computational approach can be an efficient and economic alternative to study the biomechanical interactions of foot and footwear. Continuous advancement in numerical techniques as well as computer technology has made the finite element method a versatile and successful tool for biomechanics researchdue to its capability of modelling irregular geometrical structures, complex material properties, and complicated loading and boundary conditions. Finite element analysis offers asystematic and economic alternative in search of more in-depth biomechanical information such as the internal stress and strain distributions of foot and footwear structures. In this paper, the current establishments and applications of the computational approach for footwear design and evaluation are reviewed.

자동 트랜스퍼 크레인의 위치보정 시스템 (Position Calibration System of Automatic Transfer Crane)

  • 박경택;박찬훈;신영재;강병수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.515-520
    • /
    • 2002
  • Automatic Transfer Crane is needed for automation of container terminal. It requires the control capability of exact position for loading/unloading job in yard. But it has the limitation of improvement because it has the operational environmental and its structural problems. It has the positioning errors caused by the deformation of rail, yawing motion of crane, wear of wheel, sliding motion between wheel and rail and so on. This study shows the calibration method of crane position by using the primitivity sensor and calibrating plate fixed on the ground.

  • PDF

CH-90 용접봉을 이용한 레일 두부 육성용접의 특성 (Characteristics of Rail head Upbringing Welding using CH-90 Electrode)

  • 이보영;안대환;김재성;류덕희;진형국;권호진
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.177-179
    • /
    • 2005
  • As rail steel at a crossing area must undergo much higher loading than those at regular railway, Mn-containing casting steel is normally used for its high load-carrying capability and reduced wear rate. However, as these Mn-containing casting steel is tend to have casting defects, manufacturing cost to produce defect-free Mn-containing casting steel becomes quite expensive. Therefore, in order to investigate the possibilities of replacing expensive Mn-containing casting steel with a mild steel with a surface build-up using a Mn-alloyed steel electrode.

  • PDF

Application of Arbitrary Lagrangian-Eulerian Technique for Air Explosion Structural Analysis for Naval Ships Using LS-DYNA

  • Kim Jae-Hyun;Shin Hyung-Cheol;Park Myung-Kyu
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.38-46
    • /
    • 2005
  • Survivability improvement method for naval ship design has been continually developed. In order to design naval ships considering survivability, it is demanded that designers should establish reasonable damage conditions by air explosion. Explosion may induce local damage as well as global collapse to the ship. Therefore possible damage conditions should be realistically estimated in the design stage. In this study the authors used ALE technique, one of the structure-fluid interaction techniques, to simulate air explosion and investigated survival capability of damaged naval ships. Lagrangian-Eulerian coupling algorithm, equation of the state for explosive and air, and simple calculation method for explosive loading were also reviewed. It is shown that air explosion analysis using ALE technique can evaluate structural damage after being attacked. This procedure can be applied to the real structural design quantitatively by calculating surviving time and probability.