• Title/Summary/Keyword: loading capability

Search Result 242, Processing Time 0.022 seconds

Comparison of Structural Response of W-Beam and Thrie-Beam Guardrail System (W-Beam 및 Thrie-Beam 가아드레일 시스템의 거동 분석)

  • 고만기;김기동;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.117-124
    • /
    • 1998
  • New Thrie-Beam guardrail section has been developed. The Characteristic of its geometry, energy absorbing capability and response to impact has been studied and compared with those of conventional W-Beam guardrail system. To compare the response to impact computer simulation using Barrier Ⅶ program was made. Stretch tests and static loading tests were conducted for the performance verifications.

  • PDF

Planning and Design of Protective Structures under Blast Loading (뉴스초점: 폭발하중을 받는 방호구조물의 계획과 설계)

  • Byun, Keun-Joo;Nam, Jin-Won;Byun, John;Kim, Ho-Jin
    • Journal of the Korean Professional Engineers Association
    • /
    • v.44 no.5
    • /
    • pp.36-41
    • /
    • 2011
  • Design of blast resistant structures (protective structures) require the adequate design and construction practices as well as the knowledge of characteristics of the blast loads, behavior of structures and their components under these loads. This paper focuses on how to design and evaluate the structures for blast resistance, and provides principles and discussion on analysis and design capability in protective technology and recommendations.

  • PDF

Meshless Local Petrov-Galerkin (MLPG) method for dynamic analysis of non-symmetric nanocomposite cylindrical shell

  • Ferezghi, Yaser Sadeghi;Sohrabi, Mohamadreza;Nezhad, Seyed Mojtaba Mosavi
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.679-698
    • /
    • 2020
  • In this paper, the meshless local Petrov-Galerkin (MLPG) method is developed for dynamic analysis of non-symmetric nanocomposite cylindrical shell equations of elastic wave motion with nonlinear grading patterns under shock loading. The mechanical properties of the nanocomposite cylinder are obtained based on a micro-mechanical model. In this study, four kinds of grading patterns are assumed for carbon nanotube mechanical properties. The displacements can be approximated using shape function so, the multiquadrics (MQ) Radial Basis Functions (RBF) are used as the shape function. In order to discretize the derived equations in time domains, the Newmark time approximation scheme with suitable time step is used. To demonstrate the accuracy of the present method for dynamic analysis, at the first a problem verifies with analytical solution and then the present method compares with the finite element method (FEM), finally, the present method verifies by using the element free Galerkin (EFG) method. The comparison shows the high capacity and accuracy of the present method in the dynamic analysis of cylindrical shells. The capability of the present method to dynamic analysis of non-symmetric nanocomposite cylindrical shell is demonstrated by dynamic analysis of the cylinder with different kinds of grading patterns and angle of nanocomposite reinforcements. The present method shows high accuracy, efficiency and capability to dynamic analysis of non-symmetric nanocomposite cylindrical shell, which it furnishes a ground for a more flexible design.

Seismic Performance Evaluation of Beam-Column Connection for Panel Zone Strength (패널존의 강도비에 따른 기둥-보 접합부의 내진성능 평가)

  • Kim, Sung-Young;Shin, Chang-Hoon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.11-20
    • /
    • 2007
  • The study proposes the method to cancel the scallop to avoid fracture of the circumstance of the scallop at H shape column-to-beam connection and reinforce at beam flange two faces with the cover plates and rib. A total of four specimens were tested to enhance seismic performance of building structure by reducing the frequency of stress concentration and preventing the brittle fracture of scallop. For this purpose, four full-scale test specimens were made and loaded with quasi-static reversed cyclic loading. The main analytical parameters are panel-zone-strength ratio, yield strengths, initial stiffness, total plastic rotation, contribution of each element to total plastic rotation and energy dissipation capability. For the specimens tested under repeated loading, the experimental result was satisfied with seismic performance requirement as the Special Moment Frames (SMF). The analysis results show that all of the test specimens were found to have good performance to 4% story drift and satisfied the criteria for the plastic roation capacity of SMFs that is 0.03 rad. according to the 1997 AISC seismic provision.

Development of a laboratory testing method for evaluating the loading capability of lattice girder (격자지보재(Lattice Girder)의 실내성능평가기법 개발)

  • Kim, Dong-Gyou;Bae, Gyu-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.4
    • /
    • pp.371-382
    • /
    • 2008
  • The objective of this study is to develop the laboratory testing method for evaluating the loading capacity of lattice girder used for support in tunnel structure. 3-point flexible strength test and 4-point flexible strength test were performed on three types of lattice girder, such as $LG-50{\times}20{\times}30$, $LG-70{\times}20{\times}30$, and $LG-95{\times}22{\times}32$, mainly used in Korea. Two types of loading position for each flexible strength test were used to analyze the behavior of load-deformation. The loading distribution in the lattice girder was analyzed by means of strains measured by strain gauges attached on chords and diagonal bars. In 3-point flexible strength test, the difference of the average of maximum flexible strength according to loading position had the range from 10% to 33%. In 4-point flexible strength test, the average of maximum flexible strength according to loading position was almost no difference. The difference between the average of maximum flexible strengths obtained from 3-point and 4-point flexible strength tests was from 13.56 to 31.55%. The load applied on the lattice girder was concentrated to the main chord in 3-point flexible strength test. The load applied on the lattice girder in 4-point flexible strength test was distributed to three chords and diagonal bars.

  • PDF

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.

Thick Positive Electrode using Polytetrafluorethylene (PTFE) Binder for High-Energy-Density Lithium-ion Batteries (높은 에너지 밀도의 리튬이온 이차전지를 위한 PTFE 바인더를 적용한 고로딩 양극)

  • Kang, Jeong Min;Kim, Hyoung Woo;Jang, Young Seok;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • Many researchers have increased the loading level of electrodes to improve the energy density of secondary batteries. In this study, high-loading NCM523 (LiNi0.5Co0.2Mn0.3O2) positive electrode is manufactured using a polytetrafluoroethylene (PTFE) binder, not the conventional polyvinylidene fluoride (PVdF) binder, which has been commonly used in lithium-ion batteries. Through the kneading process using PTFE suspension, not the conventional slurry process using PVdF solution in N-methyl-2-pyrrolidinone (NMP), thick electrodes with high loading are easily manufactured. When the PTFE and PVdF-based electrodes are prepared at a loading level of 5.0 mAh/cm2, respectively, the PTFE-based electrode shows better cycle performance and rate capability than those of PVdF-based electrodes. The electrode manufactured by the kneading process using a PTFE binder has high electrode porosity due to insufficient roll-press, but the porosity can be lowered by high temperature roll-press over 120℃. However, there is no significant difference in cycle performance according to the roll press temperature. In addition, the cycle performance of the high loading electrode is slightly improved by increasing the content of the conductive material. Overall, the PTFE binder can improve the performance of the high loading electrode, but additional solutions will be needed.

Experimental study on component performance in steel plate shear wall with self-centering braces

  • Liu, Jia-Lin;Xu, Long-He;Li, Zhong-Xian
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.341-351
    • /
    • 2020
  • Steel plate shear wall with self-centering energy dissipation braces (SPSW-SCEDB) is a lateral force-resisting system that exhibits flag-shaped hysteretic responses, which consists of two pre-pressed spring self-centering energy dissipation (PS-SCED) braces and a wall plate connected to horizontal boundary elements only. The present study conducted a series of cyclic tests to study the hysteretic performances of braces in SPSW-SCEDB and the effects of braces on the overall hysteretic characteristics of this system. The SPSW-SCEDB with PS-SCED braces only exhibits excellent self-centering capability and the energy loss caused by the large inclination angle of PS-SCED braces can be compensated by appropriately increasing the friction force. Under the combined effect of the two components, the SPSW-SCEDB exhibits a flag-shaped hysteretic response with large lateral resistance, good energy dissipation and self-centering capabilities. In addition, the wall plate is the primary energy dissipation component and the PS-SCED braces provide supplementary energy dissipation for system. The PS-SCED braces can provide up to 90% self-centering capability for the SPSW-SCEDB system. The compressive bearing capacity of the wall plate should be smaller than the horizontal remaining restoring force of the braces to achieve better self-centering effect of the system.

Modeling and experimental comparative analysis on the performance of small-scale wind turbines

  • Basta, Ehab;Ghommem, Mehdi;Romdhane, Lotfi;Abdelkefi, Abdessattar
    • Wind and Structures
    • /
    • v.30 no.3
    • /
    • pp.261-273
    • /
    • 2020
  • This paper deals with the design, wind tunnel testing, and performance analysis of small wind turbines targeting low-power applications. Three different small-size blade designs in terms of size, shape, and twisting angle are considered and tested. We conduct wind tunnel tests while measuring the angular speed of the rotating blades, the generated voltage, and the current under varying resistive loading and air flow conditions. An electromechanical model is also used to predict the measured voltage and power and verify their consistency and repeatability. The measurements are found in qualitative agreement with those reported in previously-published experimental works. We present a novel methodology to estimate the mechanical torque applied to the wind turbine without the deployment of a torque measuring device. This method can be used to determine the power coefficient at a given air speed, which constitutes an important performance indicator of wind turbines. The wind tunnel tests revealed the capability of the developed wind turbines to deliver more than 1225 mW when subject to an air flow with a speed of 7 m/s. The power coefficient is found ranging between 26% and 32%. This demonstrates the aerodynamic capability of the designed blades to extract power from the wind.

Aerial Application Using a Small RF Controlled Helicopter (III) - Lift Test of Rotor System - (소형 무인헬기를 이용한 항공방제기술 (III) - 로터부의 양력시험 -)

  • Koo Y.M.;Seok T.S.;Shin S.K.;Lee C.S.;Kang T.G.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.3 s.116
    • /
    • pp.182-187
    • /
    • 2006
  • Aerial application using an unmanned agricultural helicopter can reduce labor and pollution. The development of an agricultural helicopter became urgent for both precise and timely spraying. In this study, a rotor system for unmanned helicopter capable of 20 $kg_f$ payload, was developed and lift capability was evaluated. A lift force over the dead weight of the helicopter was obtained at the pitch angle of $6^{\circ}$. As the pitch angle increased to $8^{\circ}\;and\;10^{\circ}$, the total lift increased to $74{\sim}81\;kg_f\;and\;86{\sim}93\;kg_f$, respectively. A range of engine speed at the rated flight condition, lifting mean payload of 23 $kg_f$ was determined. The data acquired from this study will be used for designing tail system and RF console in the next stage of the research. The rated lift capability was enough for loading 20 liters of spray material including spraying equipments.