• Title/Summary/Keyword: loading capability

Search Result 242, Processing Time 0.019 seconds

The measurement of the internal strain of a concrete specimen using optical fiber interferometric sensors (광섬유 간섭계 센서를 이용한 콘크리트 구조물의 내부 스트레인 측정)

  • Lee, Kyung-Jin;Park, Jae-Hee;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.304-309
    • /
    • 2001
  • A Fiber optic strain sensor for the measurement of the internal strain of a concrete specimen was developed. This sensor was a 11 mm Fiber-optic Fabry-Perot interferometer attached inside a stainless steel pipe of 2 mm diameter. The fabricated strain sensors were embedded in a reinforced concrete structure of $100{\times}100{\times}500\;mm^3$ size and were measured the internal strain of a concrete structure when the external pressure was applied to the structure. For a field application, the strain sensors were attached on the bottom of a real bridge and dynamic loading test were executed. In the test, they showed good sensitivity as a deformation sensor and capability of remote monitoring.

  • PDF

Time-history analysis based optimal design of space trusses: the CMA evolution strategy approach using GRNN and WA

  • Kaveh, A.;Fahimi-Farzam, M.;Kalateh-Ahani, M.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.3
    • /
    • pp.379-403
    • /
    • 2012
  • In recent years, the need for optimal design of structures under time-history loading aroused great attention in researchers. The main problem in this field is the extremely high computational demand of time-history analyses, which may convert the solution algorithm to an illogical one. In this paper, a new framework is developed to solve the size optimization problem of steel truss structures subjected to ground motions. In order to solve this problem, the covariance matrix adaptation evolution strategy algorithm is employed for the optimization procedure, while a generalized regression neural network is utilized as a meta-model for fitness approximation. Moreover, the computational cost of time-history analysis is decreased through a wavelet analysis. Capability and efficiency of the proposed framework is investigated via two design examples, comprising of a tower truss and a footbridge truss.

A Study on the Hysteretic Model using Artificial Neural Network (인공신경망을 이용한 이력모델에 관한 연구)

  • 김호성;이승창;이학수;이원호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.387-394
    • /
    • 1999
  • Artificial Neural Network (ANN) is a computational model inspired by the structure and operations of the brain. It is massively parallel system consisting of a large number of highly interconnected and simple processing units. The purpose of this paper is to verify the applicability of ANN to predict experimental results through the use of measured experimental data. Although there have been accumulated data based on hysteretic characteristics of structural element with cyclic loading tests, it is difficult to directly apply them for the analysis of elastic and plastic response. Thus, simple models with mathematical formula such as Bi-Linear Model, Ramberg-Osgood Model, Degrading Tri Model, Takeda Model, Slip type Model, and etc, have been used. To verify the practicality and capability of this study, ANN is adapted to several models with mathematical formula using numerical data To show the efficiency of ANN in nonlinear analysis, it is important to determine the adequate input and output variables of hysteretic models and to minimize an error in ANN process. The application example is Beam-Column joint test using the ANN in modeling of the linear and nonlinear hysteretic behavior of structure.

  • PDF

Level Number Effect on Performance of a Novel Series Active Power Filter Based on Multilevel Inverter

  • Karaarslan, Korhan;Arifoglu, Birol;Beser, Ersoy;Camur, Sabri
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.711-721
    • /
    • 2018
  • This paper presents a single-phase asymmetric half-bridge cascaded multilevel inverter based series active power filter (SAPF) for harmonic voltage compensation. The effect of level number on performance of the proposed SAPF is examined in terms of total harmonic distortion (THD) and system efficiency. Besides, the relationship between the level number and the number of switching device are compared with the other multilevel inverter topologies used in APF applications. The paper is also aimed to demonstrate the capability of the SAPF for compensating harmonic voltages alone, without using a passive power filter (PPF). To obtain the required output voltage, a new switching algorithm is developed. The proposed SAPF with levels of 7, 15 and 31 is used in both simulation and experimental studies and the harmonic voltages of the load connected to the point of common coupling (PCC) is compensated under two different loading conditions. Furthermore, very high system efficiency values such as 98.74% and 96.84% are measured in the experimental studies and all THD values are brought into compliance with the IEEE-519 Standard. As a result, by increasing the level number of the inverter, lower THD values can be obtained even under high harmonic distortion levels while system efficiency almost remains the same.

Removal of Hydrogen Sulfide using Reticulated Polyurethan Carrier in Biofilter (망상구조 폴리우레탄 담체를 이용한 황화수소 제거)

  • Jeong, Gwi-Taek;Lee, Gwang-Yeon;Cha, Jin-Myoung;Park, Don-Hee
    • Korean Chemical Engineering Research
    • /
    • v.45 no.4
    • /
    • pp.372-377
    • /
    • 2007
  • In order to assess its capability as biofilter bed material under variable conditions of two parameters (inlet gas concentration and inlet gas flow rate), reticulated polyurethan was applied to remove hydrogen sulfide via a biological process. We detected a maximal elimination capacity (critical loading rate) of $488.3(330.1)g-H_2S/m^3{\cdot}hr$, when reticulated polyurethane was employed as supporting material of biofilter. This study show that the application of reticulated polyurethane carrier might be a favorable choice as a packing material in biofilter for the biological removal of hydrogen sulfide.

Seismic response of bridge pier supported on rocking shallow foundation

  • Deviprasad, B.S.;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.73-84
    • /
    • 2020
  • In the seismic design of bridges, formation of plastic hinges plays an important role in the dissipation of seismic energy. In the case of conventional fixed-base bridges, the plastic hinges are allowed to form in the superstructure alone. During seismic event, such bridges may be safe from collapse but the superstructure undergoes significant plastic deformations. As an alternative design approach, the plastic hinges are guided to form in the soil thereby utilizing the inevitable yielding of the soil. Rocking foundations work on this concept. The formation of plastic hinges in the soil reduces the load and displacement demands on the superstructure. This study aims at evaluating the seismic response of bridge pier supported on rocking shallow foundation. For this purpose, a BNWF model is implemented in OpenSees platform. The capability of the BNWF model to capture the SSI effects, nonlinear behavior and dynamic loading response are validated using the centrifuge and shake table test results. A comparative study is performed between the seismic response of the bridge pier supported on the rocking shallow foundation and conventional fixed-base foundation. Results of the study have established the beneficial effects of using the rocking shallow foundation for the seismic response analysis of the bridge piers.

Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section (경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성)

  • Lee, Kil-Sung;Seo, Hyeon-Kyeong;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

Three-Dimensional Dynamic Analysis of Underground Openings Subjected to Explosive Loadings (폭발하중에 대한 지하공동구조체의 3차원 공적 유한요소해석)

  • 김선훈;김진웅;김광진
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.171-178
    • /
    • 1997
  • Three-dimensional dynamic analyses of underground openings subjected to explosive loadings are carried out. Dynamic analyses consist of two steps; one-dimensional source calculation and three-dimensional tunnel analysis. One-dimensional source calculation includes explosive charge and the free field surrounding rock. The input pressure time history for three-dimensional tunnel analysis is obtained from the companion one-dimensional source calculation. The computer program MPDAP-3D incorporated this analysis capability. It is shown that the computer program is a useful tool for the analysis of the structural safety evaluation of underground openings during construction by drill and blasting method.

  • PDF

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

The ATC Calculation Method with Thermal Constraints and Voltage Stability Constraints (열적용량과 전압안정도를 고려한 ATC 계산 방법에 관한 연구)

  • Gim, Jae-Hyeon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.2
    • /
    • pp.86-93
    • /
    • 2007
  • This paper proposes two fast calculation methods of ATC. These two methods evaluate ATC with thermal constraints(Thermal ATC) and ATC with voltage stability constraints(Voltage ATC) respectively. The ATC with thermal constraints was based on the linear incremental power flow to account for the line flow thermal loading effects when the n-1 security constraints were included. The ATC with voltage stability constraints used two-bus equivalents of the system to find the maximum load at a load bus before reaching the voltage stability problem. The methods were tested on the IEEE 30bus systems and the results obtained were compared with those found by some other methods.