• Title/Summary/Keyword: loading arrangement

Search Result 118, Processing Time 0.024 seconds

Study on Anisotropic Creep Behavior of Nonwoven Geotextiles

  • Das A.;Kothari V. K.;Kumar A.;Mehta M. S.
    • Fibers and Polymers
    • /
    • v.6 no.4
    • /
    • pp.313-317
    • /
    • 2005
  • The anisotropy in creep behavior of two types of nonwoven fabrics (needle-punched and thermobonded spun laid) has been studied. It has been observed that the amount of time dependent extension depends on the direction, amount of loading and the structure of nonwoven the fabrics. The time dependent extension (creep) for the nonwoven fabric increases with the increase in amount of load. The higher initial extension and creep are observed for needle-punched nonwoven fabric as compared to thermobonded spun-laid nonwoven fabric. The creep behavior of needle-punched nonwoven shows a logarithmic relationship with time, but the thermobonded spun-laid nonwoven fabric does not show such logarithmic relationship. For a particular fabric, the creep is dependent on the fiber arrangement and is minimum in the direction in which the proportion of fiber is maximum and visa versa.

Effect of Nickel Oxide on Hydrogen Storage Behaviors of Mesoporous SBA-15

  • Lee, Seul-Yi;Park, Soo-Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.231-231
    • /
    • 2009
  • In this work, we prepared the Ni-loaded porous SBA-15 (SBA-15) by a depositionprecipitation (D-P) method, in order to enhance the hydrogen storage capacity. The structure and morphology of the Ni/SBA-15 were characterized by X-ray diffraction (XRD) and field emission transmission electron microscopy (FE-TEM). The results showed that, at the Ni loading used at the DP times in the range of 0-120 min, SBA-15 preserved the well-ordered hexagonal porous arrangement. The textural properties of the Ni/SBA-15 were analyzed using N2 adsorption isotherms at 77 K. Specific surface area and mesopore volume of the samples were determined from the Brunauer-Emmett-Teller (BET) equation and Barrett-Joiner-Halenda (BJH) method, respectively. The hydrogen storage capacity of the Ni/SBA-15 was evaluated at 298 K/10 MPa. The hydrogen storage capacity of the Ni/SBA-15 was increased in accordance with Ni content. Consequently, it was found that the presence of Ni on mesoporous SBA-15 created hydrogen-favorable sites which enhanced the hydrogen storage capacity by spillover effect.

  • PDF

Experimental study on the cyclic behaviour of bolted end-plate joints

  • Adany, Sandor;Calado, Luis;Dunai, Laszlo
    • Steel and Composite Structures
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 2001
  • In this paper an experimental study is performed on end-plate type joints. The test arrangement represents a column-base joint of a steel frame. Altogether six specimens were tested, each of them subjected to cyclic loading. The specimens were carefully designed by performing detailed preliminary calculations so that they would present typical behaviour types of end-plate joints. On the basis of the experimentally established moment-rotation relationship, the cyclic characteristics of each specimen have been calculated and compared to one another. The results are evaluated, qualitative and quantitative conclusions are drawn.

A Study on the Influences of the Wideness of Pram in Designing Aftbody of Container Vessels (Container선(船) 선미부형상(船尾部形狀) 설계(設計)에 있어서 Pram Wideness의 영향(影響)에 대한 고찰(考察))

  • J.S.,Moon;S.M.,HwangBo
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.1
    • /
    • pp.63-72
    • /
    • 1989
  • The influences of the wideness of pram in designing aftbody of container vessels are investigated. The large transverse KM value of the wide pram aftbody is likely to be regarded as having exellent cargo loading capacity. However the remarkable stability loss under the certain wave conditions, unfavorable situation for structural arrangement and the possibilities of poor vibration and speed-power performances should be considered in case of adopting the wide pram aftbody.

  • PDF

Development of the Container Securing Program for Large Container Carriers (대형 컨테이너선의 컨테이너 고박 프로그램 개발)

  • Shin, Sang-Hoon;Hwang, Gyu-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.362-368
    • /
    • 2014
  • Container vessel sizes have constantly increased over the past two decades. With increasing ship sizes and higher container loading capacities, the adoption of lashing bridges has also increased. Today's lashing bridge designs range from 1st tier to 3rd tier lashing bridges. Container securing program of the past which is based on two lashing rods and 1st tier lashing bridge has to be improved to be suitable for the present time. The equilibrium equations in this study are established to cover the application of 3~4 lashing rods and 2nd~3rd tier lashing bridges. In addition developed program is improved to be able to calculate the reaction forces and optimum arrangement under the external lashing. An optimization algorithm which is suitable for the container securing problems involved the equality constraint has been also adopted in this study.

Design of Excavator Boom Structure Based on Fatigue Strength of Weldment(II) (용접부 피로강도를 고려한 굴삭기 붐 구조물 설계(II))

  • Park, Sang-Chul
    • Journal of Welding and Joining
    • /
    • v.29 no.4
    • /
    • pp.61-66
    • /
    • 2011
  • The purpose of this study is to develop improved boom structures with reliable fatigue strength of weldment and lower production cost. For that purpose, multi-body dynamic analysis was performed to evaluate forces acting on arm & boom cylinders and joints of boom structure during operation of an excavator for three working postures, then stress analysis was made to investigate stress distribution around diaphragms at the bottom plate of boom structures which was known to be susceptible to fatigue failures of welded joints, and finally boom structures with optimum arrangement of diaphragms was proposed. This work mainly consists of the following two parts: part 1 focuses on multi-body dynamic analysis of excavators during operation and part 2 includes evaluations of fatigue strength of welded joints for modified boom structures.

Shielding effects on a tall building from a row of low and medium rise buildings

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.439-449
    • /
    • 2018
  • Wind loading of a tall building built amidst a group of buildings in urban environment is always greatly affected by shielding effects. Wind tunnel tests were carried out to assess the shielding provided by a row of low-rise or medium-rise buildings upstream a square-section tall building of height-to-breadth ratio 6. Mean and dynamic wind loads on the tall building were measured at different wind incidence angles and presented as interference factors (IFs). It is found that presence of a row of upstream buildings provides significant shielding to the tall building. At normal wind incidence, the mean along-wind loads and all components of fluctuating wind loads on the tall building are always reduced by shielding. Vortex shedding seems to still occur on the upper exposed part of the tall building but the vortex excitation levels are largely reduced. The degree of shielding is found to depend on a number of arrangement parameters of the row of upstream buildings. Empirical equations are proposed to quantify the shielding effect based on the wind tunnel data.

A Study on Hydrodynamic Stiffness Characteristics of Air Bearing for High Speed Spindle

  • Lee, J.Y.;Lee, D.W.;Seong, S.H.;Lee, Y.C.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.115-116
    • /
    • 2002
  • This study was carried out as one of efforts to overcome difficulties in air bearing design due to low stiffness and low damping. Hydrodynamic effects on hydrodynamic stiffness of a fluid film in a high speed air bearing with tow-row air sources are investigated. The hydrodynamic effects by the high speed over DN 1,000,000 and eccentricity of a proceeding which are not considered in conventional design of an air bearing need to be reconsidered. The hydrodynamic effects, which dominantly influence on the load capacity of air bearing, are caused mainly by proceeding speed, eccentricity, and the source positions. The two-row source arrangement in the air bearing produces quite unique hydrodynamic effects with respect to pressure distribution of the air film. Optimal arrangement of the two-row sources improves performance of an air bearing in film reaction force and loading capacity of high speed spindles. This study compares the pressure distribution by numerical simulation as a function of eccentricity of proceeding and the source positions. The air source position 1/7L form one end of an air bearing was found to be superior to source position of 1/4L. The dynamic stiffness were obtained using a two-dimensional cutting method which can directly measure the cutting reaction forces and the displacements of the spindle in two directions using a tool dynamometer and transducer sensors. Heat generation in the air film can not be negligible over the speed of DN 2,000,000. In order to analysis effects of heat generation on the characteristics of air bearing, high cooling bearing spindle and low cooling bearing spindle were tested and compared. Characteristics of the frequency response of shaft and motion of run out errors were different for the spindle. The test results show that, in the case of low cooling bearing spindle, the stiffness became smaller due to heat generation. The results, which were obtained for high speed region, may be used as a design information for spindle which can be applied to precision devices such as ultra precision grinding and ultra high speed milling.

  • PDF

A numerical method for evaluating fire performance of prestressed concrete T bridge girders

  • Zhang, Gang;Kodur, Venkatesh;Song, Chaojie;Hou, Wei;He, Shuanhai
    • Computers and Concrete
    • /
    • v.25 no.6
    • /
    • pp.497-507
    • /
    • 2020
  • This paper presents a numerical method for evaluating fire performance of prestressed concrete (PC) T shaped bridge girders under combined effect of structural loading and hydrocarbon fire exposure conditions. A numerical model, developed using the computer program ANSYS, is employed to investigate fire response of PC T shaped bridge girders by taking into consideration structural inherent parameters, namely; arrangement of prestressing strands with in the girder section, thickness of concrete cover over prestressing strands, effective degree of prestress and content of prestressing strands. Then, a sequential thermo-mechanical analysis is performed to predict cross sectional temperature followed by mechanical response of T shaped bridge girders. The validity of the numerical model is established by comparing temperatures, deflections and failure time generated from fire tests. Through numerical studies, it is shown that thickness of concrete cover and arrangement of prestressing strands in girder section have significant influence on the fire resistance of PC T shaped bridge girders. Increase in effective degree of prestress in strands with triangular shaped layout and content in prestressing strands can slow down the progression of deflections in PC T shaped bridge girder towards the final stages of fire exposure, to thereby preventing sudden collapse of the girder. Rate of deflection based failure criterion governs failure in PC T shaped bridge girders under most hydrocarbon fire exposure conditions. Structural inherent parameters incorporated into sectional configuration can significantly enhance fire resistance of PC bridge girders; thus mitigating fire induced collapse of these bridge girders.

Buckling Analysis of Corrugated Board using Finite Element Method (유한요소법에 의한 Corrugated Board의 휨 발란스 해석)

  • 박종민
    • Journal of Biosystems Engineering
    • /
    • v.28 no.2
    • /
    • pp.127-136
    • /
    • 2003
  • The top-to-bottom compression strength of corrugated board box is the most important mode of loading during it's no, and it depends largely on the edgewise compression strength of the corrugated board in the cross-machine direction and to a considerable extent on the flexural stiffness in both principal directions (CD; cross-machine direction, MD; machine direction) of the corrugated board. Corrugated board is a sandwich structure with an orthotropic property. The purpose of this study was to elucidate the principal design parameters for board combination of corrugated board from the viewpoint of bending strength through the finite element analysis [FEA] fur the various corrugated board. In general, the flexural stiffness [FS] in the MD was 2-3 times larger than that in the CD, and the effect of liner for the FS of corrugated board was much bigger than that of corrugating medium. The flexural stiffness index [FSI] was high when the stiffness of liner was in the order of inner, outer, and middle liner in double-wall corrugated board [DW], and the effect of the stiffness arrangement or itself reinforcement of corrugating medium on the FSI was not high. In single-wall corrugated board [SW] with DW. the variation of FSI with itself stiffness reinforcement of liner was much bigger than that with stiffness arrangement of liner. The highest FSI was at the ratio of about 2:1:2 for basis weight distribution of outer, middle, and inner liner if the stiffness of liner and total basis weight of corrugated board were equal in DW Secondarily. basis weight was in the order of inner, outer, and middle liner. However, the variation of FSI with basis weight distribution between liner and corrugating medium was much bigger than that with itself basis weight distribution ratio of liner and corrugating medium respectively in both DW and SW. md the FSI was high as more total basis weight was divided into liner. These phenomena fur board combination of corrugated board based on the FEA were well verified by experimental investigation.