• Title/Summary/Keyword: load-transfer method

Search Result 602, Processing Time 0.04 seconds

Numerical study on the walking load based on inverted-pendulum model

  • Cao, Liang;Liu, Jiepeng;Zhang, Xiaolin;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.245-255
    • /
    • 2019
  • In this paper, an inverted-pendulum model consisting of a point supported by spring limbs with roller feet is adopted to simulate human walking load. To establish the kinematic motion of first and second single and double support phases, the Lagrangian variation method was used. Given a set of model parameters, desired walking speed and initial states, the Newmark-${\beta}$ method was used to solve the above kinematic motion for studying the effects of roller radius, stiffness, impact angle, walking speed, and step length on the ground reaction force, energy transfer, and height of center of mass transfer. The numerical simulation results show that the inverted-pendulum model for walking is conservative as there is no change in total energy and the duration time of double support phase is 50-70% of total time. Based on the numerical analysis, a dynamic load factor ${\alpha}_{wi}$ is proposed for the traditional walking load model.

Finite element investigation of the joints in precast concrete pavement

  • Sadeghi, Vahid;Hesami, Saeid
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.547-557
    • /
    • 2018
  • This paper measures the mechanical response of precast pavement joints under moving axle loads using the finite-element method, and the models were validated with results of field tests. In order to increase the ability to use the non-linear FE analysis for design and assessment of precast pavement subjected to moving axle load, this paper investigated the effects of different load transfer between the slabs using the ABAQUS finite-element package to solve the nonlinear explicit model equations. The assembly of the panels using dowels and groove-tongue keys has been studied to assess the efficiency of keyway joint system. Concrete damage plasticity model was used to calculate the effects of permanent damages related to the failure mechanisms. With aggregate interlock as the only load transferring system, Load transfer efficiency (LTE) is not acceptable when the axle load reaches to slab joints. The Finite-element modelling (FEM) results showed that keyway joints significantly reduced tensile stresses developed at the mid-slab. Increasing the thickness of the tongue the LTE was improved but with increasing the height of the tongue the LTE was decreased. Stresses are transferred to the adjacent slab efficiently when dowels are embedded within the model. When the axle load approaches joints, tensile damage occurs sooner than compressive damage, but the damage rate remains constant, then compressive damage increases significantly and become the major form of distress under the dowels.

Analysis of Laterally Loaded Piles Using Soil Resistance of Wedge Failure Mode (Wedge Failure Mode 형태의 반력을 이용한 수평재하 말뚝의 거동 분석)

  • Kim, Young-Ho;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.59-72
    • /
    • 2009
  • The load distribution and deflection of offshore piles are investigated by lateral load-transfer curve method (p-y curve). Special attention is given to the soil-pile interaction and soil resistance of 3D wedge failure mode. A framework for determining a hyperbolic p-y curve is proposed based on theoretical analysis and experimental load test results. The methods for determining appropriate material parameters needed for constructing the proposed p-y curves are presented in this paper. Through comparisons with field case studies, it was found that the proposed method in the present study estimates reasonably the load transfer behavior of pile, and thus, the computed pile responses, such as bending moment and lateral displacement, agree well with the actual measured responses.

Control of Power Distribution for Multiple Receivers in SIMO Wireless Power Transfer System

  • Kim, Gunyoung;Boo, Seunghyun;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.4
    • /
    • pp.221-230
    • /
    • 2018
  • A method to control the power distribution among receivers by the load values in a single-input, multiple-output (SIMO) wireless power transfer (WPT) system is investigated. We first derive the value of loads to maximize total efficiency. Next, a simple, but effective analytical formula of the load condition for the desired power distribution ratio is presented. The derived load solutions are simply given by system figure of merits and desired power ratios. The formula is validated with many numerical examples via electromagnetic simulations. We demonstrate that with the choice of loads from this simple formula, the power can be conveniently and accurately distributed among receivers for most practical requirements in SIMO WPT systems.

Numerical Analysis on the Transient Cooling Characteristics of an Infrared Detector Cryochamber (적외선 센서 냉각용 극저온 용기의 과도 냉각 특성에 관한 수치해석)

  • 이정훈;김호영;강병하
    • Progress in Superconductivity and Cryogenics
    • /
    • v.4 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • This work investigates the transient cooling characteristics of an Infrared (IR) detector cryochamber, which has a critical effect on the cooling load. The current thermal modeling considers the conduction heat transfer through a cold well. the gaseous conduction due to outgassing. and the radiation heat transfer. The transient cooling Performance. i.e. the penetration depth and cooling load, is determined using a finite difference method. It is found that the penetration depth increases as the bore conductivity increases. Gaseous conduction and radiation hardly affect the penetration depth. The transient cooling load increases as the bore conductivity increases. The effects of gaseous conduction and radiation on transient heat transfer are weak at initial stages of cooling. However, their effects become significant as the cooling Process Proceeds.

Load transfer characteristics and bearing capacity of micropiles (마이크로파일의 하중전이특성 및 지지성능 분석)

  • Goo, Jeong-Min;Choi, Chang-Ho;Cho, Sam-Deok;Lee, Ki-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.899-904
    • /
    • 2009
  • This paper presents the analysis result of load-transfer mechanism and pile movements associated with the development of frictional resistance to understand the engineering characteristics of micropile behavior. An field load tests were performed for two different types of micropiles and they are (i) thread bar reinforcement with D=50mm and (ii) hollow steel pipe reinforcement with $D_{out}$=82.5mm and $D_{in}$=60.5mm and wrapped with woven geotextile for post-grouting. The load test results indicated that micropiling with pressured grouting provided better load-transfer characteristics than micropiling with gravity grouting under both compressive and tensile loading conditions in that unit skin frictional resistance is well distributed along installation depth. The unit weight and unconfined compressive strength of cured grout were obtained for each piling method. The strength and unit weight of micropile with pressured grouting was higher than those with gravity grouting. The fact that load bearing quality with pressured grouting is better than that of gravity grouting could be attributed to the dense mutual adhesion between surrounding ground and pile due to pressurized grouting method and better grout quality.

  • PDF

Joint Stiffness Tests for Precast Concrete Pavement (프리캐스트 콘크리트 포장의 하중전달 성능 실험)

  • Yang, Sung-Chul;Kim, Seong-Min;Yoo, Tae-Seok;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.229-239
    • /
    • 2008
  • This paper compares the load transfer efficiency between precast concrete pavement specimen and typical concrete pavement specimen by means of laboratory and field tests. An experimental method was developed to evaluate the load transfer efficiency of the dowel bars buried in the concrete pocket and grouted with cement mortar. The test results showed that the load transfer efficiency of the specimen for the dowel bars repaired with grout was equivalent to that of the control specimen. In addition, a series of FWD field tests were conducted on the precast pavement to evaluate the joint stiffness. The field test results revealed that the central deflection of the precast slab slightly increased but the load transfer efficiencies at the joints were almost the same as those in the typical concrete pavement slab.

  • PDF

Method for Adjusting Single Matching Network for High-Power Transfer Efficiency of Wireless Power Transfer System

  • Seo, Dong-Wook;Lee, Jae-Ho;Lee, Hyungsoo
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.962-971
    • /
    • 2016
  • A wireless power transfer (WPT) system is generally designed with the optimum source and load impedance in order to achieve the maximum power transfer efficiency (PTE) at a specific coupling coefficient. Empirically or intuitively, however, it is well known that a high PTE can be attained by adjusting either the source or load impedance. In this paper, we estimate the maximum achievable PTE of WPT systems with the given load impedance, and propose the condition of source impedance for the maximum PTE. This condition can be reciprocally applied to the load impedance of a WPT system with the given source impedance. First, we review the transducer power gain of a two-port network as the PTE of the WPT system. Next, we derive two candidate conditions, the critical coupling and the optimum conditions, from the transducer power gain. Finally, we compare the two conditions carefully, and the results therefore indicate that the optimum condition is more suitable for a highly efficient WPT system with a given load impedance.

Analysis of Stress Transfer Mechanism of SCP-Reinforced Composite Ground (SCP 복합지반의 응력전이거동 해석)

  • Kim, Yun-Tae;Park, Hyun-Il;Lee, Hyung-Joo;Kim, Sang-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.227-234
    • /
    • 2004
  • Sand compaction pile (SCP) method is composed of compacted sand pile inserted into the soft clay deposit by displacement method. SCP-reinforced ground is composite soil which consists of the SCP and the surrounding soft soil. When a surcharge load is applied on composite ground, time-dependent behavior occurs in the soft soil due to consolidation according to radial flow toward SCP and stress transfer also takes place between the SCP and the soft soil. This paper presents the numerical results of cylindrical composite ground that was conducted to investigate consolidation characteristics and the stress transfer mechanism of SCP-reinforced composite ground. The results show that the consolidation of soft clay has a significant effect on the stress transfer mechanism and stress concentration ratio of composite ground

  • PDF

Estimation of Pile Shaft Resistances with Elastic Modulus Depending on Strain (변형률에 따른 탄성계수 변화를 고려한 말뚝의 주면지지력 산정)

  • Kim, Seok-Jung;Kim, Sung-Heon;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.933-943
    • /
    • 2009
  • Axial loads and shaft resistances can be calculated by load transfer analysis using strain data with load level. In load transfer analysis, the elastic modulus of concrete is a one of the most important parameters to consider. The elastic modulus, $E_{50}$, suggested by ACI (American Concrete Institute), has been commonly used. However, elastic modulus of concrete shows nonlinear stress-strain characteristic, so nonlinearity should be considered in load transfer analysis. In this paper, a load transfer analysis was performed by using data obtained from bi-directional pile load tests for four cases of drilled shafts. For consideration of nonlinearity, elastic modulus was calculated by both the Fellenius method and the nonlinear method, assuming the stress-strain relation of concrete to be a quadratic function, and then, the calculated elastic modulus was applied to the estimation of shaft resistance. The calculated shaft resistances were compared with the result obtained using the constant elastic modulus of ACI code. It was found that the f-w curves are similar to each method, and elastic modulus and shaft resistances decreased as strain increased. Moreover, shaft resistances estimated from elastic modulus considering nonlinearity were 5~15% different than those obtained using the constant elastic modulus.

  • PDF