• Title/Summary/Keyword: load-torque disturbance

Search Result 138, Processing Time 0.028 seconds

Experimental Results of Adaptive Load Torque Observer and Robust Precision Position Control of PMSM (PMSM의 정밀 Robust 위치 제어 및 적응형 외란 관측기 적용 연구)

  • Go, Jong-Seon;Yun, Seong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.3
    • /
    • pp.117-123
    • /
    • 2000
  • A new control method for precision robust position control of a PMSM (Permanent Magnet Synchronous Motor) using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the PMSM system approximately linearized using the field-orientation method. Recently, many of these drive systems use the PMSM to avoid backlashes. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore, a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observer gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimental results are presented in the paper using DSP TMS320c31.

  • PDF

Disturbance Control of Induction Motor using Tough Disturbance Cancellation State Observer (외란 상쇄 관측기를 이용한 유도전동기 외란 제어)

  • Kim, Young-Choon;Cho, Moon-Taek
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.131-136
    • /
    • 2006
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control with Matlab simulink. The speed response of conventional PI controller characteristics is affected by variation of load torque disturbance. In this system, the speed control characteristics using a feedforward control toughen about a load torque disturbance.

  • PDF

Design of Unknown Disturbance and Current Observer for Electric Motor Systems (전동기 시스템의 미지외란 및 전류 관측기 설계)

  • Lee, Myoungseok;Jung, Kyungmo;Kong, Kyoungchul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.615-620
    • /
    • 2015
  • DOB (Disturbance Observer) is an useful control method for estimating the disturbance applied to dynamic systems. Disturbance observer can be used to implement a robust control system to generate a control input for rejecting the disturbance, and it can be also used to estimate the disturbance to obtain information. The system that uses disturbance estimation is investigated for high performance control such as automatic door systems, walking robot and electric power steering system in vehicles. In this paper, a novel disturbance observer which is called disturbance and current observer for estimating load torque in the motor system is proposed. The difference between the DOB for disturbance rejection and DCOB is mathematically verified. Current and angular velocity are required for estimating the load torque of the motor in DOB. However, the DCOB can estimate load torque and current without current sensor. DCOB is designed based on modeling of the motor system. Appropriate Q-filter is selected and the applicability of DCOB is verified by simulation. The estimated disturbance and current of the electric motor can be verified without current sensor, as experiments of the actual motor system.

A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor (적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구)

  • 고종선;윤성구
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF

Tough Disturbance Cancellation State Observer of Induction Motor for Disturbance Vibration (외란 변동에 강인한 유도전동기의 외란 상쇄 관측기)

  • Song H.B.;Seo Y.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07b
    • /
    • pp.816-819
    • /
    • 2003
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control with Matlab simulink. The speed response of conventional PI controller characteristics is affected by variation of load torque disturbance. In this system, the speed control characteristics using a feedforward control toughen about a load torque disturbance.

  • PDF

Design of Disturbance Cancellation State Observer for Driving Induction Motor (유도전동기 운전에 대한 외란상쇄 상태 관측기 설계)

  • Kim, Yong-Ju;Seo, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1088-1090
    • /
    • 2002
  • This paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional PI controller characteristic is affected by variations of load torque disturbance. In the proposed system. the speed control characteristic using a feedforward control isn't affected by a load torque disturbance.

  • PDF

Design of Disturbance Cancellation for Motor Driving (전동기 운전을 위한 외란상쇄 관측기 설계)

  • Kim Yong-ju;Seo Young-soo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.150-153
    • /
    • 2002
  • This paper designed a robust control of an induction motor using a disturbance cancellation observer of a feedforward control. The speed response of conventional Pl controller characteristic is affected by variations of load torque disturbance. In the proposed system the speed control characteristic using a feedforward control isn't affected by a load torque disturbance.

  • PDF

Driving Constant Speed of Induction Motor using Disturbance Cancellation Observer (외란상쇄 관측기를 적용한 유도전동기 정속도 운전)

  • Kim Yong-ju;Seo Young-soo
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.179-182
    • /
    • 2002
  • This Paper described a robust control of an induction motor using a disturbance cancellation observer of a feedforward control, The speed response of conventional Pl controller characteristic is affected by variations of load torque disturbance. Tn the proposed system, the speed control characteristic using a feedforward control isn't affected by a load torque disturbance.

  • PDF

Study on LSDC Design for Coiling Shape Control of Hot Strip Mills (열간압연 권취형상 제어를 위한 LSDC 설계에 관한 연구)

  • Lee, Sang Ho;Park, Hong Bae;Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.9
    • /
    • pp.869-874
    • /
    • 2015
  • We developed an LSDC (Load Shift and Load Distribution Control) technology in order to improve coil quality and productivity by reducing tension fluctuation especially for the tail of the strip in the down coiler in hot strip mills. To adapt the new controller, the torque and speed distribution between the zero pinch roll, pinch roll, and mandrel are needed. The proposed controller is a combination of an LSC to share the tension between the mill stand and the mandrel, and an LDC to shift the torque load from the zero pinch roll to the pinch roll. From the simulation, the proposed controller is verified under the torque disturbance. Using a field test, the torque deviation decreased by nearly 50% through utilization of the LSDC control.

Precision Speed Control of PMSM Using Neural Network Disturbance observer and Parameter compensation (신경망 외란관측기와 파라미터 보상기를 이용한 PMSM의 속도제어)

  • Ko Jong-Sun;Lee Yong-Jae;Kim Kyu-Gyeom
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.389-392
    • /
    • 2001
  • This paper presents neural load disturbance observer that used to deadbeat load torque observer and regulation of the compensation gain by parameter estimator. As a result, the response of PMSM follows that of the nominal plant. The load torque compensation method is compose of a neural deadbeat observer. To reduce of the noise effect, the post-filter, which is implemented by MA process, is proposed. The parameter compensator with RLSM (recursive least square method) parameter estimator is suggested to increase the performance of the load torque observer and main controller. The proposed estimator is combined with a high performance neural torque observer to resolve the problems. As a result, the proposed control system becomes a robust and precise system against the load torque and the parameter variation. A stability and usefulness, through the verified computer simulation, are shown in this paper.

  • PDF