• Title/Summary/Keyword: load-slip curve

Search Result 39, Processing Time 0.024 seconds

Study on bond behavior of steel reinforced high strength concrete after high temperatures

  • Chen, Zongping;Zhou, Ji;Wang, Xinyue
    • Advances in concrete construction
    • /
    • v.10 no.2
    • /
    • pp.113-125
    • /
    • 2020
  • This paper presents experimental results on bond-slip behavior of steel reinforced high-strength concrete (SRHC) after exposure to elevated temperatures. Three parameters were considered in this test: (a) high temperatures (i.e., 20℃, 200℃, 400℃, 600℃, 800℃); (b) concrete strength (i.e., C60, C70, C80); (c) anchorage length (i.e., 250 mm, 400 mm). A total of 17 SRHC specimens subjected to high temperatures were designed for push out test. The load-slip curves at the loading end and free end were obtained, the influence of various variation parameters on the ultimate bond strength and residual bond strength was analyzed, in addition, the influence of elevated temperatures on the invalidation mechanism was researched in details. Test results show that the shapes of load-slip curves at loading ends and free ends are similar. The ultimate bond strength and residual bond strength of SRHC decrease first and then recover partly with the temperature increasing. The bond strength is proportional to the concrete strength, and the bond strength is proportional to the anchoring length when the temperature is low, while the opposite situation occurs when the temperature is high. What's more, the bond damage of specimens with lower temperature develops earlier and faster than the specimens with higher temperature. From these experimental findings, the bond-slip constitutive formula of SRHC subjected to elevated temperatures is proposed, which fills well with test data.

Stud connection in composite structures: development with concrete age

  • Chengqian Wen;Guotao Yang
    • Steel and Composite Structures
    • /
    • v.47 no.6
    • /
    • pp.729-741
    • /
    • 2023
  • As the most popular shear connection in composite structures, mature concrete has been widely investigated by considering mechanical properties of stud connectors (SCs) embedded. To further enhance the fabrication efficiency of composite structures and solve the contradiction between construction progress and structural performance, it is required to analyze the shear performance of stud connections of composite structures with different concrete ages. 18 typical vertical push-out tests were carried out on stud shear connectors at concrete ages of 7 days, 14 days, and 28 days. Also, the effects of concrete age, stud spacing and stud diameter on the shear capacity, connection stiffness and failure mode of the connectors were studied. A new relationship expression of load-slip for SCs with various concrete ages was proposed. The existing design code for the SCs shear strength was evaluated according to the experimental data, and a more practical prediction equation for the shear capacity of SCs with different concrete ages was established. A great agreement was observed between the experimental and theoretical results, which can provide a reference for engineering practices.

Effect of Base Roughness of Footing on Settlement Characteristics of Footing (기초저면의 조도가 기초의 침하 특성에 미치는 영향)

  • Yoo, Nam-Jae;Kim, Young-Gil;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.12
    • /
    • pp.15-23
    • /
    • 1992
  • This research is to investigate the effect of base roughness of footing on characteristics of load-settlement curve. Parametric experiments of small scaled model test were performed with changing the properties of base roughness of model footing; Gluing the vinyl, aluminum, sand paper, sand beneath the model footing surface. The width of model footing and relative density of soil foundation were also changed to investigate their effects on settlement characteristics of footing. The ultimate bearing capacity as well as the initial slope of load-settlement curve obtained from test results were compared with those from limit equilibrium methods proposed by Terzaghi, Hansen and Meyerhof. From test results, it was confirmed that the base roughness affected the failure mechanisms of showing different shapes of slip lines formed beneath the footing.

  • PDF

Reological Studies on Cocoon Filament II. Changes of strength and elongation at breaking related to the stretching speed and swelling degree (견사의 탄성적성질에 관한 연구 II. 인장속도 및 팽윤에 따른 파괴강신도의 변화)

  • 남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.14 no.2
    • /
    • pp.105-112
    • /
    • 1972
  • The effects of the stretching speed and the swelling degree of cocoon filaments on load-elongation curve were tested by tensilon with special attachments. The values of breaking strength, elongation at break and initial tensile strength obtained from load elongation curves are summarized as follows; 1. The breaking strength of the swollen cocoon filament appeared to increase at the high stretching speed, while elongation at break decreased. 2. Load-elongation curve became crinkled at the low speed of stretching. It suggests that both slip and break of the macrofibrils may occur in swelling of cocoon bave. 3. Breaking strength appeared to considerably decrease and elongation at break not to increase in swelling test at 9$0^{\circ}C$ for 60 min. 4. The initial tensile strength was influenced by the stretching speed and swelling degree of cocoon filaments.

  • PDF

Mechanical Bar Anchorage of the PC Beam in Beam-Column Joint Using Plates and Bolts (지지대 및 제결볼트를 이용한 프리캐스트 콘크리트 골조구조의 보 하단 철근 정착공법 개발)

  • 유영찬;최근도;김긍환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.539-544
    • /
    • 2000
  • The purpose of this study is to develop the mechanical anchorage, namely MAB-BOP (Mechanical Anchorage of 90$^{\circ}$ Hooked Bars with BOlt nad Plate) of the beam-column joint in precast concrete framed structures. Six specimens simulating typical interior beam-column joints were tested to investigate the mechanical characteristics of MAB-BOP. Of primary interest was the measurement of the slip of the anchored bar. Th load-slip curve obtained from this test were used to compare the mechanical performances of the different anchoring methods. Based on the test results, it was found that MAB-BOP showed sufficient anchoring strength capacity compared to 90$^{\circ}$ hooked bar method. So, MAB-BOP can be used as the anchoring methods of the reinforcing bars in PC beam-column joint.

  • PDF

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

Mechanical behavior of stud shear connectors embedded in HFRC

  • He, Yu-Liang;Wu, Xu-Dong;Xiang, Yi-Qiang;Wang, Yu-Hang;Liu, Li-Si;He, Zhi-Hai
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.177-189
    • /
    • 2017
  • Hybrid-fiber reinforced concrete (HFRC) may provide much higher tensile and flexural strengths, tensile ductility, and flexural toughness than normal concrete (NC). HFRC slab has outstanding advantages for use as a composite bridge potential deck slab owing to higher tensile strength, ductility and crack resistance. However, there is little information on shear connector associated with HFRC slabs. To investigate the mechanical behavior of the stud shear connectors embedded in HFRC slab, 14 push-out tests (five batches) in HFRC and NC were conducted. It was found that the stud shear connector embedded in HFRC had a better ductility, higher stiffness and a slightly larger shear bearing capacity than those in NC. The experimentally obtained ultimate resistances of the stud shear connectors were also compared against the equations provided by GB50017 2003, ACI 318-112011, AISC 2011, AASHTO LRFD 2010, PCI 2004, and EN 1994-1-1 (2004), and an empirical equation to predict the ultimate shear connector resistance considering the effect of the HFRC slabs was proposed and validated by the experimental data. Curve fitting was performed to find fitting parameters for all tested specimens and idealized load-slip models were obtained for the specimens with HFRC slabs.

A Study on Current and Torque Characteristics Of Three-Phase Induction Motor in Single-Phase Operation. (삼상유도전동기의 결상시 전류 및 회전력특성에 관한 연구)

  • 유춘식;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.25-33
    • /
    • 1982
  • The characteristics of the stator current and torque of a small three- phase squirrel cage induction motor and studied experimentally under the situation of a single-phase operation due to various causes. Through the experiments, the torque-slip and current-slip curve of single-phase circuit as well as three-phase circuit are obtained and the needed constants are determined. The stator current and torque are calculated by the current and torque equations derived by the unbalanced circuit theory. The numerical values obtained from the above methods are compared with the experimental values under the same conditions. The results of the study are summerized as follow; 1) The values computed by the unbalanced circuit theory generally come to approach the values recorded through experiments. 2) Near the rated load, speed drop is less than 1.2 per cent of the speed of three-phase induction motor and torque reduces less than 3 per cent of it of three-phase induction motor when three-phase induction motor is run under a single-phase. On the other hand, the stator current in a single-phase circuit is more than 1.9 times of it in three-phase circuit. 3) The stalling torque in a single-phase circuit is reduced to about 41 per cent of it in three-phase circuit while the corresponding slip is moved toward the synchroneous speed and the corresponding stator current is increased.

  • PDF

Flexural Behavior of Encased Composite Beams with Partial Shear Interaction (매립형 불완전 합성보의 휨 거동 예측)

  • Heo, Byung Wook;Bae, Kyu Woong;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.6 s.73
    • /
    • pp.747-757
    • /
    • 2004
  • With steel and concrete composite beams, the incomplete interaction between the steel and the concrete slab leads to an appreciable increase in beam deflections. Moreover, encased composite beams using a deep deck plate or hollow-core PC slabs are critical to deflection due to their inherent geometry. In this paper, by using the calculation tools that were developed for a previous study on the deflection of encased composite beams considering the slip effects and load-slip curve, the shear bond stress and additional deflection induced due to interface slip of the encased composite beam are presented. It was found that the slip effects significantly contribute to the encased composite beam deflections and result in stiffness reduction of up to 30% compared to that of full shear interaction beams. The predicted results were compared with the measurement of 18 specimens tested in this study, and comparisons show a high degree of accuracy, within 6%.

Bond deterioration of corroded steel in two different concrete mixes

  • Zhou, Haijun;Liang, Xuebing;Wang, Zeqiang;Zhang, Xiaolin;Xing, Feng
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.725-734
    • /
    • 2017
  • This paper investigated the effects of rebar corrosion on bond performance between rebar and two different concrete mixes (compressive strengths of 20.7 MPa and 44.4 MPa). The specimen was designed as a rebar centrally embedded in a 200 mm concrete cube, with two stirrups around the rebar to supply confinement. An electrochemical accelerated corrosion technique was applied to corrode the rebar. 120 specimens of two different concrete mixes with various reinforcing steel corrosion levels were manufactured. The corrosion crack opening width and length were recorded in detail during and after the corrosion process. Three different loading schemes: monotonic pull-out load, 10 cycles of constant slip loading followed by pull-out and varied slip loading followed by pull-out, were carried out on the specimens. The effects of rebar corrosion with two different concrete mixes on corrosion crack opening, bond strength and corresponding slip value, initial slope of bond-slip curve, residual bond stress, mechanical interaction stress, and energy dissipation, were discussed in detail. The mean value and coefficient of variation of these parameters were also derived. It was found that the coefficient of variation of the parameters of the corroded specimens was larger than those with intact rebar. There is also obvious difference in the two different concrete mixes for the effects of rebar corrosion on bond-slip parameters.