• Title/Summary/Keyword: load-slip

Search Result 518, Processing Time 0.022 seconds

The Control of load Commutated Current Source Inverter for Induction Motor Drive (유도전동기(誘導電動機) 구동(驅動)을 위한 부하전류식(負荷轉流式) 전류형(電流型) 인버터의 제어(制御))

  • Chung, Y.T.;Sim, J.M.;Lee, S.Y.;Soh, Y.C.;Lee, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.255-257
    • /
    • 1994
  • The V/F slip frequency constant control methods are used for driving induction motor with load commutated current source inverter, that is. constant V/F and slip frequency driving is used to load commutate the inverter below the critical frequency, while constant voltage and variable frequency and slip frequency driving are used in above the critical region. In order to applicate the load commutated current source inverter to the general use, speed control range of induction noter is selected to two times at rated frequency. Therefore, economical application is possible because of the maximum reduction of the condenser of the inverter output port. The use of the proposed force commutated circuit improves the false operation of force commutated circuit and inverter commutation failure which are produced by the influence of the lower-order harmonics of the conventional load commutated current source inverter at starting.

  • PDF

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure (건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계)

  • Lee, Sang-Hyun;Min, Kyung-Won;Park, Ji-Hun;Lee, Roo-Jee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.6 s.46
    • /
    • pp.21-30
    • /
    • 2005
  • In this study, a seismic design methodology for friction dampers based on the story shear force distribution of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are peformed. From those analyses, the effect of the slip-load and the brace stiffness was investigated and the optimal silliness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of the slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis using real earthquake data.

Study on Application of Reinforcement Device to Provide Greater Dynamic Stability for Power Transmission Towers and its Effect

  • Yang, Kyeong-hyeon;Bae, Choon-hee;Jeong, Nam-geun;Kim, Doo-young;Kim, Sung-min;Jang, Yong-hee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.1
    • /
    • pp.33-41
    • /
    • 2016
  • To verify that the friction damper used to high buildings as a kind of control technology of wind vibration can reduce dynamic behaviors of PTTs effectively, slip dampers in this paper are proposed to absorb the energy through relatively frictional movement of slip dampers applied to main post of a PTT (Power Transmission Tower) when dynamic displacement of a PTT occurs. The result of dynamic analysis is presented to determine the capacity of the damper system by controlling damping ratio on the resonance condition. It is observed that by installing slip dampers at a PTT the strain amplitudes of the main post caused by wind load are effectively reduced. Therefore it is shown that the proposed damper satisfies the strengthened wind-load design standards, and its efficacy was also validated experimentally by field testing.

A Design of Prototype 1C2M Railway Vehicle Propulsion Control System Considering Slip Reduction of Traction Motor

  • Chang, Chin-Young;Kim, Jae-Moon;Kim, Yoon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.429-435
    • /
    • 2015
  • This study proposes a re-adhesion algorithm that has stable traction effort for rolling stock slip/slide minimization when deliverable traction decreases by slip. The proposed scheme estimates appropriate reference speed using two encoders for reducing slip and controls traction effort stably and has stable control characteristics for disturbance. The algorithm which uses the maximum adhesive effort by instantaneous estimation of adhesion force stably controls traction effort and gives rolling stock excellent acceleration and deceleration characteristics. And a slip sensing element that can quickly detect slip is used. Load motor and inverter were checked in various slip conditions for creating various line conditions.

Calculation of Failure Load of V-shaped Rock Notch Using Slip-line Method (Slip-line법을 이용한 V형 암석 노치의 파괴하중 계산)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.404-416
    • /
    • 2020
  • An analytical procedure for calculating the failure load of a V-shaped rock notch under two-dimensional stress conditions was developed based on the slip-line plastic analysis method. The key idea utilized in the development is the fact that the α-line, one of the slip-lines, extends from the rock notch surface to the horizontal surface outside the notch when the rock around the notch is in the plastic state, and that there exists an invariant which is constant along the α-line. Since the stress boundary condition of the horizontal surface outside the rock notch is known, it is possible to calculate the normal and shear stresses acting on the rock notch surface by solving the invariant equation. The notch failure load exerted by the wedge was calculated using the calculated stress components for the notch surface. Rock notch failure analysis was performed by applying the developed analytical procedure. The analysis results show that the failure load of the rock notch increases with exponential nonlinearity as the angle of the notch and the friction of the notch surface increase. The analytical procedure developed in this study is expected to have applications to the study of fracture initiation in rocks through wedge-shaped notch formation, calculation of bearing capacity of the rock foundation, and stability analysis of rock slopes and circular tunnels.

Seismic progressive collapse mitigation of buildings using cylindrical friction damper

  • Mirtaheri, Masoud;Omidi, Zobeydeh;Salkhordeh, Mojtaba;Mirzaeefard, Hamid
    • Earthquakes and Structures
    • /
    • v.20 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The occurrence of progressive collapse induced by the removal of the vertical load-bearing element in the structure, because of fire or earthquake, has been a significant challenge between structural engineers. Progressive collapse is defined as the complete failure or failure of a part of the structure, initiating with a local rupture in a part of the building and can threaten the stability of the structure. In the current study, the behavior of the structures equipped with a cylindrical friction damper, when the vertical load-bearing elements are eliminated, is considered in two cases: 1-The load-bearing element is removed under the gravity load, and 2-The load-bearing element is removed due to the earthquake lateral forces. In order to obtain a generalized result in the seismic case, 22 pair motions presented in FEMA p 695 are applied to the structures. The study has been conducted using the vertical push down analysis for the case (1), and the nonlinear time-history analysis for the second case using OpenSEES software for 5,10, and 15-story steel frames. Results indicate that, in the first case, the load coefficient, and accordingly the strength of the structure equipped with cylindrical friction dampers are increased considerably. Furthermore, the results from the second case demonstrate that the displacements, and consequently the forces imposed to the structure in the buildings equipped with the cylindrical friction damper substantially was reduced. An optimum slip load is defined in the friction dampers, which permits the damper to start its frictional damping from this threshold load. Therefore, the optimum slip load of the damper is calculated and discussed for both cases.

The Static and Dynamic Performance of a MEMS/MST Based Gas-Lubricated proceeding Bearing with the Slip Flow Effect

  • Kwak, H.-D.;Lee, Y.-B.;Kim, C.-H.;Lee, N.-S.;Choi, D.-H.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.103-104
    • /
    • 2002
  • The influence of the slip flow on the MEMS/MST based gas-lubricated proceeding bearing is investigated. Based on the modified Reynolds equation, the numerical analysis of the finite difference method was developed by applying the first order slip flow approximation. The numerical prediction of bearing performance provides the significant results concerning the slip flow effect in micro scale gas-lubricated proceeding bearing. The result indicates that the load-carrying capacity as well as the rotordynamic coefficients were significantly reduced due to the slip flow. Through this work, it is concluded that the slip flow effect could not be ignored in the micro gas-lubricated proceeding bearing.

  • PDF

A Study on the Air Foil Journal Bearing Analysis with Perturbed Rarefaction Coefficients

  • Lee, Yong-Bok;Park, Dong-Jin;Kim, Chang-Ho;Jang, Gun-Hee
    • KSTLE International Journal
    • /
    • v.7 no.2
    • /
    • pp.27-34
    • /
    • 2006
  • Knudsen number is the ratio of molecular mean free path versus mm thickness and the criterion to determine the flow form. When its value is lower than 0.01, the flow can be assumed to has no slip boundary condition. And in the case that the value is between 0.01 and 10, then the flow has slip boundary condition at both the adjacent walls. The condition of the air flow between the rotating journal and top foil in the air foil bearing is determined by the rotating speed and load, and the Knudsen number is also varied by those values. Because the molecular mean free path is variable to the pressure and temperature, more exact formulation is necessary to understand and analyze the flow regime. In this study, the analysis considering Knudsen number formulated with those variables (pressure, temperature and mm thickness) was executed. The approximate value was examined using the equation to confirm whether the flow has the slip or no-slip boundary condition. From the analytic investigation, it was decided to range approximately 0.01 to 1.0 and the flow can be supposed to have the slip boundary condition. Under the condition of the slip flow, the static characteristics of the air foil bearing were examined using modified Reynolds equations. The results were compared with those considering no slip condition. It shows that the slip condition makes the flow decelerates and the load carrying capacity decreases compared with no slip condition. And as the bearing number and eccentricity ratio increase, the load carrying capacity also increased at both the cases. From this result, it can be supposed that the bearing torque also increases. In the analysis of the dynamic characteristics, the perturbed Knudsen number was taken into consideration. Because the Knudsen number is expressed as the terms of each variable, the perturbed equation can be simply derived. The results of both cases considering and not considering Knudsen number were compared each other. In the case of the direct terms of the stiffness and damping coefficients, the difference between both cases was little and increased as the bearing number and eccentricity ratio increased. And the cross terms have less or more differences.

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Simulation of Plastic Collapsing Load and Deformation Behaviours(I) (소성 붕괴하중 및 변형거동 해석(1))

  • 김영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.9
    • /
    • pp.2165-2172
    • /
    • 1995
  • Optimization of mesh discretization has been proposed to improve the accuracy of limit analysis solution of collapse load by using the Rigid Body Spring Model(R. B. S. M) under the plane strain condition. Moreover, the fracture behaviour of materials was investigated by employing the fracture mechanism of a spring connecting the triangular rigid body element. It has been clarified that the collapse load and the geometry of slip boundary for optimized mesh discretization were close to those of the slip line solution. Further, the wedge-shaped fracture of a cylinder under a lateral load and the central fracture of a strip in the drawing process were well simulated.