• Title/Summary/Keyword: load-displacement hysteresis

Search Result 52, Processing Time 0.026 seconds

An Experimental Study on Static Characteristics of Servo Valves using Transmission Line Pressures (배관 압력을 이용한 서보밸브 정적 특성에 관한 실험적 연구)

  • Kim, Sung Dong;Joo, Byeol Jin;Yun, So Nam
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.42-50
    • /
    • 2016
  • The conventional technique to measure the hysteresis and the null of servo valves is defined in ISO 10770-1 and based on load flow signal of the servo valve. A new technique based on the transmission line pressures is suggested in this study. The new measuring method was verified through a series of experiments. No hysteresis was observed between the spool displacement and the transmission line pressures, load pressure or each chamber pressure. Some hysteresis was observed between valve input and pressures, which was found to be the same as those of load flow and spool displacement for the valve input. By using the chamber pressures, the hysteresis and the null are easier to measure than the load pressure or differential pressure between those two chamber pressures because the chamber pressures showed sharp edges.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Development of Modeling Method of Hysteretic Characteristics for Accurate Load Measurement of Trucks (상용차량의 정확한 하중 측정을 위한 겹판스프링의 이력특성 모델링 기법 개발)

  • Seo, M.K.;Batbayar, E.;Shin, H.Y.;Lee, H.Y.;Ko, J.I.
    • Journal of Drive and Control
    • /
    • v.18 no.2
    • /
    • pp.38-45
    • /
    • 2021
  • In recent years, the demand for an onboard scale system which can directly monitor load distribution and overload of vehicles has increased. Depending on the suspension type of the vehicle, the onboard scale system could use different types of sensors, such as, angle sensors, pressure sensors, load cells, etc. In the case of a vehicle equipped with leaf spring suspension system, the load of the vehicle is measured by using the deflection or displacement of the leaf spring. Leaf springs have hysteresis characteristics that vary in displacement depending on the load state. These characteristics cause load measurement errors when moving or removing cargoes. Therefore, this study aimed at developing an onboard scale device for cargo vehicles equipped with leaf springs. A sectional modeling method which can reduce measurement errors caused by hysteresis characteristics was also proposed.

Experimental investigations of the seismic performance of bridge piers with rounded rectangular cross-sections

  • Shao, Guangqiang;Jiang, Lizhong;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.463-484
    • /
    • 2014
  • Solid piers with a rounded rectangular cross-section are widely used in railway bridges for high-speed trains in China. Compared to highway bridge piers, these railway bridge piers have a larger crosssection and less steel reinforcement. Existing material models cannot accurately predict the seismic behavior of this kind of railway bridge piers. This is because only a few parameters, such as axial load, longitudinal and transverse reinforcement, are taken into account. To enable a better understanding of the seismic behavior of this type of bridge pier, a simultaneous influence of the various parameters, i.e. ratio of height to thickness, axial load to concrete compressive strength ratio and longitudinal to transverse reinforcements, on the failure characteristics, hysteresis, skeleton curves, and displacement ductility were investigated. In total, nine model piers were tested under cyclic loading. The hysteretic response obtained from the experiments is compared with that obtained from numerical studies using existing material models. The experimental data shows that the hysteresis curves have significantly pinched characteristics that are associated with small longitudinal reinforcement ratios. The displacement ductility reduces with an increase in ratio of axial load to concrete compressive strength and longitudinal reinforcement ratio. The experimental results are largely in agreement with the numerical results obtained using Chang-Mander concrete model.

Exterior Joint Behavior of Low-Rise Reinforced Concrete Frame with Non-Seismic Detail (비내진 상세를 가진 저층 R.C조의 외부접합부 거동)

  • 김영문;기찬호;장준호;이세웅;김상대
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.481-486
    • /
    • 1998
  • In this paper, elastic and inelastic behavior of exterior joint of moment-resisting R.C frame with non-seismic detail subjected to reversed cyclic lateral load such as earthquake excitations was investigated. 1/2-scals subassemblage exterior beam-column joint including slab was manufactured based on similitude law. Then, pseudo static test under the displacement control was performed. The results of 1)crack pattern and failure mode, 2)degradation stiffness and strength, energy dissipation capacity from load-displacement hysteresis curve, 3)strain of steel were analysed.

  • PDF

Static Behavior Characteristics of Disc Spring Stacks (적층 접시스프링의 정적 거동 특성)

  • Kim, Youngheub;Cho, Seunghyun;Park, Dong Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.47-53
    • /
    • 2013
  • The wide application of disc springs to the designing of mechanical products with space limit is mainly attributable to their property of sustaining large axial load with small displacement. Due to the impediments in expecting the final results caused by the significant differences existing between a single unit and a stacked form, the force-displacement characteristics of a single disc spring and stacked disc springs are mainly examined in this study. In particular, the hysteresis of the series stack and the parallel stack will be investigated through the FE analysis and the analytical results will finally be compared with the acquired experimental data. In the final result, the analytical results were in accordance with the experimental data.

Field monitoring of the train-induced hanger vibration in a high-speed railway steel arch bridge

  • Ding, Youliang;An, Yonghui;Wang, Chao
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1107-1127
    • /
    • 2016
  • Studies on dynamic characteristics of the hanger vibration using field monitoring data are important for the design and evaluation of high-speed railway truss arch bridges. This paper presents an analysis of the hanger's dynamic displacement responses based on field monitoring of Dashengguan Yangtze River Bridge, which is a high-speed railway truss arch bridge with the longest span throughout the world. The three vibration parameters, i.e., dynamic displacement amplitude, dynamic load factor and vibration amplitude, are selected to investigate the hanger's vibration characteristics in each railway load case including the probability statistical characteristics and coupled vibration characteristics. The influences of carriageway and carriage number on the hanger's vibration characteristics are further investigated. The results indicate that: (1) All the eight railway load cases can be successfully identified according to the relationship of responses from strain sensors and accelerometers in the structural health monitoring system. (2) The hanger's three vibration parameters in each load case in the longitudinal and transverse directions have obvious probabilistic characteristics. However, they fall into different distribution functions. (3) There is good correlation between the hanger's longitudinal/transverse dynamic displacement and the main girder's transverse dynamic displacement in each load case, and their relationships are shown in the hysteresis curves. (4) Influences of the carriageway and carriage number on the hanger's three parameters are different in both longitudinal and transverse directions; while the influence on any of the three parameters presents an obvious statistical trend. The present paper lays a good foundation for the further analysis of train-induced hanger vibration and control.

Novel steel bracket and haunch hybrid system for post-earthquake retrofit of damaged exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.239-257
    • /
    • 2020
  • In the present study, an innovative steel bracket and haunch hybrid scheme is devised, for retrofitting of earthquake damaged deficient beam-column sub-assemblages. Formulations are presented for evaluating haunch force factor under combined load case of lateral and gravity loads for the design of double haunch retrofit. The strength hierarchies of control and retrofitted beam-column sub-assemblages are established to showcase the efficacy of the retrofit in reversing the undesirable strength hierarchy. Further, the efficacy of the proposed retrofit scheme is demonstrated through experimental investigations carried out on gravity load designed (GLD), non-ductile and ductile detailed beam-column sub-assemblages which were damaged under reverse cyclic loading. The maximum load carried by repaired and retrofitted GLD specimen in positive and negative cycle is 12% and 28% respectively higher than that of the control GLD specimen. Further, the retrofitted GLD specimen sustained load up to drift ratio of 5.88% compared with 2.94% drift sustained by control GLD specimen. Repaired and retrofitted non-ductile specimen, could attain the displacement ductility of three during positive cycle of loading and showed improved ductility well above the expected displacement ductility of three during negative cycle. The hybrid haunch retrofit restored the load carrying capacity of damaged ductile specimen to the original level of control specimen and improved the ductility closer to the expected displacement ductility of five. The total cumulative energy dissipated by repaired and retrofitted GLD, non-ductile and ductile specimens are respectively 6.5 times, 2.31 times, 1.21 times that of the corresponding undamaged control specimens. Further, the damage indices of the repaired and retrofitted specimens are found to be lower than that of the corresponding control specimens. The novel and innovative steel bracket and haunch hybrid retrofit scheme proposed in the present study demonstrated its effectiveness by attaining the required displacement ductility and load carrying capacity and would be an excellent candidate for post-earthquake retrofit of damaged existing RC structures designed according to different design evolutions.

Seismic Capacity of Reinforced Concrete Frames Retrofitted with H-beam Frame (H형강 프레임으로 보강한 철근 콘크리트 골조의 내진성능 평가)

  • Kim, Min Sook;Choi, Hosoon;Song, Seung Eon;Lee, Young Hak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.127-132
    • /
    • 2013
  • This study proposed proposes a retrofitting method using an H-beam frame to improve the seismic performance of non-seismic designed reinforced concrete frames. To evaluate the seismic performance with the H-beam frames, a cyclic lateral load test was performed and the experimental result was compared with the bared frame, and a masonry infilled RC frame. The results was were analyzed regarding aspects of the load-displacement hysteresis behavior, effective stiffness, displacement ductility, and cumulative energy dissipation. AlsoIn addition, it was possible to prove both an increase of in the maximum load capacity, effective stiffness, and energy dissipation capacity using the H-beam frame.

Cyclic load testing and numerical modeling of concrete columns with substandard seismic details

  • Marefat, Mohammad S.;Khanmohammadi, Mohammad;Bahrani, Mohammad K.;Goli, Ali
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.367-380
    • /
    • 2005
  • Recent earthquakes have shown that many of existing buildings in Iran sustain heavy damage due to defective seismic details. To assess vulnerability of one common type of buildings, which consists of low rise framed concrete structures, three defective and three standard columns have been tested under reversed cyclic load. The substandard specimens suffered in average 37% loss of strength and 45% loss of energy dissipation capacity relative to standard specimens, and this was mainly due to less lateral and longitudinal reinforcement and insufficient sectional dimensions. A relationship has been developed to introduce variation of plastic length under increasing displacement amplitude. At ultimate state, the length of plastic hinge is almost equal to full depth of section. Using calibrated hysteresis models, the response of different specimens under two earthquakes has been analyzed. The analysis indicated that the ratio between displacement demand and capacity of standard specimens is about unity and that of deficient ones is about 1.7.