• Title/Summary/Keyword: load-displacement

Search Result 2,744, Processing Time 0.031 seconds

Performance Characteristics of a Variable Displacement Engine at Part-Load and Idle (부분부하와 무부하에서의 가변 배기량기관의 성능특성)

  • 한성빈;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.1
    • /
    • pp.232-239
    • /
    • 1994
  • This paper presents an effective way of improving fuel consumption for a variable displacement engine. The improvement of fuel consumption can be accomplished by means of deactivating inlet and exhaust valves, reducing the number of effective cylinders of a four-cylinder gasoline engine that is mounted on a domestic compact automobile.

A study on the efficiency improvement of electro-hydraulic pump system by load sensing (부하센싱에 의한 전기유압펌프시스템의 효율 향상에 관한 연구)

  • 황성호;강종우;박성환;하석홍;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1178-1182
    • /
    • 1993
  • Variable-displacement pumps are inherently more efficeint than fixed-displacement pumps under varying loads. Their energy-saving characteristics can be improved by the use of special control. This paper shows the improvement of the system by the use of load-sesing technique.

  • PDF

Evaluation of Permanent Lateral Displacement of a Cyclic Laterally Loaded Pile in Sandy Soil (모래지반에서 횡방향 반복하중을 받는 말뚝의 영구수평변위 평가)

  • Baek, Sung-Ha;Kim, Joon-Young;Lee, Seung-Hwan;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.2
    • /
    • pp.17-26
    • /
    • 2017
  • Pile foundations that support offshore structures or transmission towers are dominantly subjected to cyclic lateral loads due to wind and waves, causing permanent displacement which can severely affect stability of the structures. In this study, a series of cyclic lateral load tests were conducted on a pre-installed aluminum flexible pile in sandy soil with three different relative densities (40%, 70% and 90%) in order to evaluate the permanent displacement of a cyclic laterally loaded pile. Test results showed that the cyclic lateral loads accumulated the irreversible lateral displacement, so-called permanent displacement. As the number of cyclic lateral load increased, accumulated permanent displacement increased, but the permanent displacement due to one loading cycle gradually decreased. In addition, the permanent displacement of a pile increased with decrement of relative density and decreased by soil saturation. From the test results, the normalized permanent displacement defined as the cumulative permanent displacement to the initial permanent displacement ratio was investigated, and empirical equations for predicting the normalized permanent displacement was developed in terms of relative density of the soil and the number of cyclic lateral load.

Indirect displacement monitoring of high-speed railway box girders consider bending and torsion coupling effects

  • Wang, Xin;Li, Zhonglong;Zhuo, Yi;Di, Hao;Wei, Jianfeng;Li, Yuchen;Li, Shunlong
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.827-838
    • /
    • 2021
  • The dynamic displacement is considered to be an important indicator of structural safety, and becomes an indispensable part of Structural Health Monitoring (SHM) system for high-speed railway bridges. This paper proposes an indirect strain based dynamic displacement reconstruction methodology for high-speed railway box girders. For the typical box girders under eccentric train load, the plane section assumption and elementary beam theory is no longer applicable due to the bend-torsion coupling effects. The monitored strain was decoupled into bend and torsion induced strain, pre-trained multi-output support vector regression (M-SVR) model was employed for such decoupling process considering the sensor layout cost and reconstruction accuracy. The decoupled strained based displacement could be reconstructed respectively using box girder plate element analysis and mode superposition principle. For the transformation modal matrix has a significant impact on the reconstructed displacement accuracy, the modal order would be optimized using particle swarm algorithm (PSO), aiming to minimize the ill conditioned degree of transformation modal matrix and the displacement reconstruction error. Numerical simulation and dynamic load testing results show that the reconstructed displacement was in good agreement with the simulated or measured results, which verifies the validity and accuracy of the algorithm proposed in this paper.

FINITE ELEMENT ANALYSIS OF STRESSES INDUCED BY OSSEOINTEGRATED PROSTHESES WITH OR WITHOUT CONNECT10N BETWEEN NATURAL TOOTH AND OSSEOINTEGRATED ABUTMENTS (골 유착성 임프란트 보철수복시 자연지대치와의 고정유무에 따른 유한요소법적 응력분석)

  • Ko, Heon-Ju;Chung, Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.2
    • /
    • pp.147-160
    • /
    • 1991
  • The purpose of this study was to examine, by the method of finite element analysis, how implant geometry with or without connection between natural tooth and osseointegrated abutments affected the stress distribution in surrounding bone and osseointegrated prosthesis. The mandibular first and second molars were removed and the two osseointegrated implants were placed in the first and second molar sites. Stress analysis induced by prostheses with connection(Model A)or without connection(Model B) between natural tooth(second bicuspid) and two osseointegrated abutments(first molar and second molar) was performed under vertical point load(Load P1) or distributed point load(Load P2). The results were as follows; 1. Under vertical point load, mesial tilting was shown in both Model A and Model B and inferior displacement of Model A was greater than that of Model B in the second bicuspid. 2. Under vortical point load, the first and second molars showed mesial tilting in both Model A and Model B, and inferior displacement of them was similar in Model A and Model B and was less than that of the second bicuspid. 3. Under distributed point load, mesial displacement was shown in Model A and Model B and inferior displacement of Model A was less than that of Model B in the second bicuspid. 4. Under distributed point load, mesial tilting was shown and inferior displacement of Model A was similar to that of Model B in the first and second molars. 5. In Model A under vertical point load, high stress was concentrated in the corneal portion of first molar and distributed throughout the second molar and the second bicuspid, and the stress distribution of the second molar was greater than that of the second bicuspid. 6. In Model B under vertical point load, high stress was concentrated in the coronal and mesio-cervical portion of the first molar. 7. In Model A under distributed point load, high stress was concentrated in the mesio-cervical portion of the first molar and evenly distributed throughout the second molar and the second bicuspid. 8. In Model B under distributed point load, high stress was concentrated in the disto-cervical portion of the second bicuspid and evenly distributed throughout the first and second molars.

  • PDF

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.

An analytical analysis of the pullout behaviour of reinforcements of MSE structures

  • Ren, Feifan;Wang, Guan;Ye, Bin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.233-240
    • /
    • 2018
  • Pullout tests are usually employed to determine the ultimate bearing capacity of reinforced soil, and the load-displacement curve can be obtained easily. This paper presents an analytical solution for predicting the full-range mechanical behavior of a buried planar reinforcement subjected to pullout based on a bi-linear bond-slip model. The full-range behavior consists of three consecutive stages: elastic stage, elastic-plastic stage and debonding stage. For each stage, closed-form solutions for the load-displacement relationship, the interfacial slip distribution, the interfacial shear stress distribution and the axial stress distribution along the planar reinforcement were derived. The ultimate load and the effective bond length were also obtained. Then the analytical model was calibrated and validated against three pullout experimental tests. The predicted load-displacement curves as well as the internal displacement distribution are in closed agreement with test results. Moreover, a parametric study on the effect of anchorage length, reinforcement axial stiffness, interfacial shear stiffness and interfacial shear strength is also presented, providing insights into the pullout behaviour of planar reinforcements of MSE structures.

Application of Variational Method to the Elastic Foundation (변분법에 의한 탄성지반 해석)

  • Lee, Seung-Hyun;Han, Jin-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.10
    • /
    • pp.4642-4647
    • /
    • 2011
  • Solution for elastic foundation of plane strain state was derived by the application of variational method. Functions of the transverse distribution of the displacements for the analysis were chosen as linear functions. Loading conditions considered for the analysis were concentrated load and distributed load. Under the loading condition of the concentrated load, surface displacement was decreased drastically as the distance from the point of the loading increased. Under the loading condition of the distributed load, surface displacements were more uniformly distributed beneath the loading area when the ratio of the half of the loading width to the depth(B/H) of the compressible layer was greater. The surface displacement was more quickly converged from the edge of the loading area as the ratio(B/H) increased.

Investigating loading rate and fibre densities influence on SRG - concrete bond behaviour

  • Jahangir, Hashem;Esfahani, Mohammad Reza
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.877-889
    • /
    • 2020
  • This work features the outcomes of an empirical investigation into the characteristics of steel reinforced grout (SRG) composite - concrete interfaces. The parameters varied were loading rate, densities of steel fibres and types of load displacement responses or measurements (slip and machine grips). The following observations and results were derived from standard single-lap shear tests. Interfacial debonding of SRG - concrete joints is a function of both fracture of matrix along the bond interface and slippage of fibre. A change in the loading rate results in a variation in peak load (Pmax) and the correlative stress (σmax), slip and machine grips readings at measured peak load. Further analysis of load responses revealed that the behaviour of load responses is shaped by loading rate, fibre density as well as load response measurement variable. Notably, the out-of-plane displacement at peak load increased with increments in load rates and were independent of specimen fibre densities.

An Experimental Study on the Stiffness Change of Scaffold Working Plate caused by Damage of Cross-beam (보재의 손상에 따른 비계용 작업발판의 강성 변화에 대한 실험적 연구)

  • Sung, Yong-won;Kang Min-guk;Won, Jeong-Hun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.5
    • /
    • pp.27-35
    • /
    • 2021
  • This study investigated the change in stiffness and deflection of a scaffold working plate caused by damage to a cross-beam in the plate. Experiments were conducted considering various load and damage conditions of cross-beams. A cross-beam falling off from the working plate was considered damaged. The load-displacement curves of specimens at the center of the uniform load showed that the working plate stiffness decreased by 14.66%-1.89%, depending on the load interval due to the damage of one cross-beam. A reduction in the stiffness of 33.94%-40.76% resulted from the damage of two cross-beams. Moreover, the displacement increased by an average of 25% when one cross-beam was damaged and an average of 65% when two cross-beams were damaged. Therefore, damage to the cross-beam in the working plate can potentially cause accidents and harm workers. As the load increases, the risk of an accident due to the aforementioned damage also increases because the stiffness remarkably decreases with the load increase. Further, the damage to the cross-beam mainly reduces the stiffness but increases the displacement rather than the strength of the working scaffold plate.