• 제목/요약/키워드: load-deflection properties

검색결과 187건 처리시간 0.026초

Nonlinear analysis of reinforced concrete beams strengthened with polymer composites

  • Pendhari, S.S.;Kant, T.;Desai, Y.M.
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.1-18
    • /
    • 2006
  • Strengthening of existing old structures has traditionally been accomplished by using conventional materials and techniques, viz., externally bonded steel plates, steel or concrete jackets, etc. Alternatively, fibre reinforced polymer composite (FRPC) products started being used to overcome problems associated with conventional materials in the mid 1950s because of their favourable engineering properties. Effectiveness of FRPC materials has been demonstrated through extensive experimental research throughout the world in the last two decades. However there is a need to use refined analytical tools to simulate response of strengthened system. In this paper, an attempt has been made to develop a numerical model of strengthened reinforced concrete (RC) beams with FRPC laminates. Material models for RC beams strengthened with FRPC laminates are described and verified through a nonlinear finite element (FE) commercial code, with the help of available experimental data. Three dimensional (3D) FE analysis has been performed by assuming perfect bonding between concrete and FRPC laminate. A parametric study has also been performed to examine effects of various parameters like fibre type, stirrup's spacing, etc. on the strengthening system. Through numerical simulation, it has been shown that it is possible to predict accurately the flexural response of RC beams strengthened with FRPC laminates by selecting an appropriate material constitutive model. Comparisons are made between the available experimental results in literature and FE analysis results obtained by the present investigators using load-deflection and load-strain plots as well as ultimate load of the strengthened beams. Furthermore, evaluation of crack patterns from FE analysis and experimental failure modes are discussed at the end.

Large deflection analysis of laminated composite plates using layerwise displacement model

  • Cetkovic, M.;Vuksanovic, Dj.
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.257-277
    • /
    • 2011
  • In this paper the geometrically nonlinear continuum plate finite element model, hitherto not reported in the literature, is developed using the total Lagrange formulation. With the layerwise displacement field of Reddy, nonlinear Green-Lagrange small strain large displacements relations (in the von Karman sense) and linear elastic orthotropic material properties for each lamina, the 3D elasticity equations are reduced to 2D problem and the nonlinear equilibrium integral form is obtained. By performing the linearization on nonlinear integral form and then the discretization on linearized integral form, tangent stiffness matrix is obtained with less manipulation and in more consistent form, compared to the one obtained using laminated element approach. Symmetric tangent stiffness matrixes, together with internal force vector are then utilized in Newton Raphson's method for the numerical solution of nonlinear incremental finite element equilibrium equations. Despite of its complex layer dependent numerical nature, the present model has no shear locking problems, compared to ESL (Equivalent Single Layer) models, or aspect ratio problems, as the 3D finite element may have when analyzing thin plate behavior. The originally coded MATLAB computer program for the finite element solution is used to verify the accuracy of the numerical model, by calculating nonlinear response of plates with different mechanical properties, which are isotropic, orthotropic and anisotropic (cross ply and angle ply), different plate thickness, different boundary conditions and different load direction (unloading/loading). The obtained results are compared with available results from the literature and the linear solutions from the author's previous papers.

Numerical nonlinear bending analysis of FG-GPLRC plates with arbitrary shape including cutout

  • Reza, Ansari;Ramtin, Hassani;Yousef, Gholami;Hessam, Rouhi
    • Structural Engineering and Mechanics
    • /
    • 제85권2호
    • /
    • pp.147-161
    • /
    • 2023
  • Based on the ideas of variational differential quadrature (VDQ) and finite element method (FEM), a numerical approach named as VDQFEM is applied herein to study the large deformations of plate-type structures under static loading with arbitrary shape hole made of functionally graded graphene platelet-reinforced composite (FG-GPLRC) in the context of higher-order shear deformation theory (HSDT). The material properties of composite are approximated based upon the modified Halpin-Tsai model and rule of mixture. Furthermore, various FG distribution patterns are considered along the thickness direction of plate for GPLs. Using novel vector/matrix relations, the governing equations are derived through a variational approach. The matricized formulation can be efficiently employed in the coding process of numerical methods. In VDQFEM, the space domain of structure is first transformed into a number of finite elements. Then, the VDQ discretization technique is implemented within each element. As the last step, the assemblage procedure is performed to derive the set of governing equations which is solved via the pseudo arc-length continuation algorithm. Also, since HSDT is used herein, the mixed formulation approach is proposed to accommodate the continuity of first-order derivatives on the common boundaries of elements. Rectangular and circular plates under various boundary conditions with circular/rectangular/elliptical cutout are selected to generate the numerical results. In the numerical examples, the effects of geometrical properties and reinforcement with GPL on the nonlinear maximum deflection-transverse load amplitude curve are studied.

On the snap-buckling phenomenon in nanocomposite curved tubes

  • Dan Chen;Jun Shao;Zhengrong Xu;Hadi Babaei
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.13-22
    • /
    • 2024
  • The nonlinear snap-through buckling of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) curved tubes is analytically investigated in this research. It is assumed that the FG-CNTRC curved tube is supported on a three-parameter nonlinear elastic foundation and is subjected to the uniformly distributed pressure and thermal loads. Properties of the curved nanocomposite tube are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite tube are temperature-dependent. The governing equations of the curved tube are obtained using a higher-order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved tube. Equations of motion are solved using the two-step perturbation technique for nanocomposite curved tubes which are simply-supported and clamped. Closed-form expressions are provided to estimate the snap-buckling resistance of FG-CNTRC curved pipes rested on nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of the distribution pattern and volume fraction of CNTs, thermal field, foundation stiffnesses, and geometrical parameters on the instability of the curved nanocomposite tube.

고강도 강섬유보강 콘크리트의 역학적 특성 및 장기변형 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties and Long-Term Deformations of High-Strength Steel Fiber Reinforced Concrete)

  • 윤의식;박승범
    • 대한토목학회논문집
    • /
    • 제26권2A호
    • /
    • pp.401-409
    • /
    • 2006
  • 본 연구에서는 고강도 강섬유보강 콘크리트(HSFRC)의 설계 및 시공을 위한 기초 자료를 제공하기 위하여 역학적 특성 및 장기변형 특성에 관한 연구를 수행하였으며, 탄성계수, 압축강도, 인장강도, 휨강도, 건조수축 및 크리프에 미치는 강섬유 혼입의 영향을 검토하고, 휨파괴인성을 평가하였다. 연구결과, HSFRC의 압축강도에 미치는 강섬유의 혼입효과는 그다지 크지 않았고, 탄성계수는 섬유혼입률이 증가함에 따라 증가하는 것으로 나타났으며, 인장강도, 휨강도 및 휨인성에 미치는 섬유혼입률($V_f$) 및 섬유형상비($l_f/d_f$)의 영향은 대단히 큰 것으로 나타났다. 이는 $V_f$$l_f/d_f$의 증가와 함께 극한하중에 상응하는 처짐량이 증가하고, 강섬유의 균열구속성능에 의해 하중-처짐곡선의 하강곡선이 완만하게 감소하기 때문인 것으로 판단된다. 또한 크리프 및 건조수축에 미치는 섬유혼입률($V_f$)의 영향은 대단히 큰 것으로 나타났으며, 특히 고강도 콘크리트에 강섬유를 혼입하면 크리프 변형에 비해 건조수축 변형의 저감에 더욱 효과가 큰 것으로 나타났다.

족부보장구(A.F.O.) 판스프링용 Glass/Epoxy와 Aramid/Epoxy의 충격속도 변화에 따른 손상 거동 (The Damage Behavior of Glass/Epoxy and Aramid/Epoxy in Leaf Spring of Ankle Foot Orthosis (A.F.O) due to the Various Impact Velocities)

  • 송삼홍;오동준;정훈희;김철웅
    • 대한기계학회논문집A
    • /
    • 제28권10호
    • /
    • pp.1526-1533
    • /
    • 2004
  • The needs of walking assistant device such as the Ankle Foot Orthosis (A.F.O) are getting greater than before. However, most of the A.F.O are generally imported rather than domestic manufacturing. The major reason of high import reliability is the rack of impact properties of domestic commercial products. Therefore, this research is going to focus on the evaluation of impact properties of the A.F.O which has the high import reliability. Unfortunately, these kinds of researches are not performed sufficiently. This research is going to evaluate impact energy behavior in composite materials such as the glass/epoxy (S-glass, [0/90]sub 2S/) and the aramid/epoxy (Kevlar-29, woven type, 8 ply) of ankle foot orthosis. The approach methods were as follows. 1) The history of impact load and impact energy due to the various velocities. 2) Relationship between the deflection and damage shape according to the impact velocities. 3) The behavior of absorbed energy and residual strength rate due to the various impact velocities.

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • 제26권4호
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • 제65권5호
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

형상비 및 지반특성에 따른 교대 강관파일의 변위특성에 대한 해석적 연구 (Analytical Investigation on the Deflection Characteristics of Steel Piles in Bridge Abutment for Aspect Ratio and Ground Properties)

  • 장갑철;장경호;한중근;이양규;김종렬
    • 한국공간구조학회논문집
    • /
    • 제7권4호
    • /
    • pp.73-78
    • /
    • 2007
  • 연약지반에서 측방 유동에 의해 주변 지반에 큰 변형을 일으키며 이로 인하여 말뚝기초에 손상을 입히게 된다. 이러한 경우 설치된 말뚝을 수동말뚝이라 하며 편재하중이 작용하게 되고 이로 인해 측방토압을 받게 되며 측방변위가 발생하여 상부구조물에 영향을 미치게 된다. 그러나 국내의 경우 이러한 말뚝과 교대 변위간의 관계에 대한 예측 및 메커니즘에 대한 연구가 부족한 실정이다. 본 연구에서는 교대이동에 대한 해석을 위해 입체, 판 및 프레임 요소를 복합적으로 해석할 수 있는 연성 3차원 유한요소해석 프로그램을 개발하였다. 개발된 연성해석 프로그램을 이용하여 연약지반상 형상비(두께-지름비, t/D비)를 변수로 한 교대강관파일의 변형특성을 명확히 하였다.

  • PDF

캔틸레버공법 PC 세그멘탈 다경간 교량의 처짐 및 단면력 검토를 위한 축소모델에 관한 연구 (Reduced Model of the PC Segmental Multispan Bridge Constructed by Free Cantilever Method for Investigation of Deflection and Member Force)

  • 이재훈;이명재
    • 대한토목학회논문집
    • /
    • 제13권4호
    • /
    • pp.1-13
    • /
    • 1993
  • 프리스트레스트 콘크리트 구조물의 설계에 있어서 적절한 단면 및 소요 강선량의 결정을 위하여 구조해석을 여러번 수행하게 되는 것이 보통이다. 그러나 PC 세그멘탈 다경간 교량의 경우 콘크리트 및 강선의 시간의존적인 성질, 시공순서에 따른 구조계의 변화등을 고려한 구조해석에 많은 노력과 시간이 필요하게 되므로 다경간 교량에 대한 축소 교량모델을 가정하여 구조해석을 수행하기도 한다. 본 연구에서는 캔틸레버 공법으로 가설되는 10 경간 PC 세그멘탈 교량을 대상으로 5 경간 및 3 경간으로 축소시킨 교량모델을 가정하고 이에 대한 구조해석을 수행하여 처짐 및 모멘트의 계산 결과를 비교하므로써 축소 교량모델의 적합여부를 검토하였다. 또한 프리스트레스트 콘크리트의 극한모멘트 계산을 위한 하중계수 적용 방법에 대하여 고찰해 보았다.

  • PDF