• Title/Summary/Keyword: load-deflection

Search Result 1,342, Processing Time 0.03 seconds

The Influence and Treatment Method of Extraneous Deformation & Unstability on the Flexural Toughness of FRC (FRC의 휨인성 평가시 외부변형과 불안정성의 영향 및 처리방안)

  • Kim, Kyoung-Soo;Kim, Nam-Wook;Lim, Jeong-Hwan;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.119-128
    • /
    • 2002
  • This study discusses the issues related to the accuracy of deflection measurement and unstable energy in the testing of FRC. Some deflection methods may include large extraneous deformations. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and inaccurate toughness evaluation can result from this faulty curve. Some load-deflection curve of FRC may be attributed to unstable region of the load-deflection curve. If the unstable region is not correctly evaluated toughness indices from the curve would inappropriately represent true indices. In this paper, the discussion will focus on the effects of the deflection measuring system both on the measurement of the load-deflection response of FRC and the evaluation of FRC toughness and the effects of the unstable region and the management method of unstable region on toughness evaluation of FRC. It is observed that ASTM toughness indices which is based on measured deflection at first cracking is influenced significantly by extraneous deformation of deflection measurement. Extraneous deformation in deflection measurement, however result in negligible errors in toughness evaluation if JSCE and JCI definitions are used.

Investigation of Live Load Deflection Limit for Steel Cable Stayed and Suspension Bridges

  • Park, Ki-Jung;Kim, Do-Young;Hwang, Eui-Seung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1252-1264
    • /
    • 2018
  • Long span bridges such as steel cable stayed and suspension bridges are usually more flexible than short to medium span bridges and expected to have large deformations. Deflections due to live load for long span bridges are important since it controls the overall heights of the bridge for securing the clearance under the bridge and serviceability for securing the comfort of passengers or pedestrians. In case of sea-crossing bridges, the clearance of bridges is determined considering the height of the ship master from the surface of the water, the trim of the ship, the psychological free space, the tide height, and live load deflection. In the design of bridges, live load deflection is limited to a certain value to minimize the vibrations. However, there are not much studies that consider the live load deflection and its effects for long span bridges. The purpose of this study is to investigate the suitability of live load deflection limit and its actual effects on serviceability of bridges for steel cable-stayed and suspension bridges. Analytical study is performed to calculate the natural frequencies and deflections by design live load. Results are compared with various design limits and related studies by Barker et al. (2011) and Saadeghvaziri et al. (2012). Two long span bridges are selected for the case study, Yi Sun-Sin grand bridge (suspension bridge, main span length = 1545 m) and Young-Hung grand bridge (cable stayed bridge, main span length = 240 m). Long-term measured deflection data by GNSS system are collected from Yi Sun-Sin grand bridge and compared with the theoretical values. Probability of exceedance against various deflection limits are calculated from probability distribution of 10-min maximum deflection. The results of the study on the limitation of live load deflection are expected to be useful reference for the design, the proper planning and deflection review of the long span bridges around the world.

Influence of Extraneous Deformation on the Toughness of Fiber Reinforced Concrete (외부변형이 섬유보강콘크리트의 인성에 미치는 영향)

  • Kim, Kyoung-Soo;Ko, Young-Zoo;Lim, Jeong-Whan;Bae, Ju-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.4 no.1
    • /
    • pp.111-120
    • /
    • 2000
  • This study discusses the issues related to the accuracy of deflection measurement in the testing of FRC. Some deflection methods may include large extraneous deformations. such as local crushing at the loading points, elastic and inelastic deformations of the loading fixture, etc. A faulty load-deflection curve will be obtained if an unstable deflection measuring system is used, and incorrect toughness evaluation can be reached on the basis of this faulty curve. In this paper, the discussion will focus on the effects of the deflection measuring system on both the measurement of the load-deflection response of FRC and the evaluation of FRC toughness. It is observed that ASTM toughness indices which is based on measuring deflection at first cracking is influenced significantly by extraneous deformation in deflection measurement. But extraneous deformation in deflection measurement result in negligible errors in toughness evaluation using JSCE and JCI definition. However, in order to evaluate toughness accuracy, it is desirable to use net load-deflection curve eliminated extraneous deformation.

  • PDF

Effects of Partially Distributed Loads on Dynamic Response of Plane Parabolic Arch (부분분포하중이 평면 포물선아치의 동적응답에 마치는 영향)

  • Cho, Jin-Goo;Park, Keun-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.6
    • /
    • pp.21-28
    • /
    • 2004
  • This study aims to investigate the effects of partially distributed loads on the dynamic behaviour of steel parabolic arches by using the elasto-plastic finite element model based on the Von Mises yield criteria and the Prandtl-Reuss How rule. For this purpose, the vertical and the radial load conditions were considered as a distributed loading and the loading range is varied from 40% to 100% of arch span. Normal arch and arch with initial deflection were studied. The initial deflection of arch was assumed by the sinusoidal motile of ${\omega}_i\;=\;{\\omega}_O$ sin ($n{\pi}x/L$). Several numerical examples were tested considering symmetric initial deflection when the maximum initial deflection at the apex is fixed as L/1000. The analysis resluts showed that the maximum deflection at the apex of arch was occurred when 70% of arch span was loaded. The maximum deflection at the quarter point of arch span was occurred when 50% of arch span was loaded. It is known that the optimal rise to span ratio between 0.2 and 0.3 when the vertical or radial distributed load is applied. It is verified that the influence of initial deflection of radial load case is more serious than that of vertical load case.

A study on load-deflection behavior of two-span continuous concrete beams reinforced with GFRP and steel bars

  • Unsal, Ismail;Tokgoz, Serkan;Cagatay, Ismail H.;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.629-637
    • /
    • 2017
  • Continuous concrete beams are commonly used as structural members in the reinforced concrete constructions. The use of fiber reinforced polymer (FRP) bars provide attractive solutions for these structures particularly for gaining corrosion resistance. This paper presents experimental results of eight two-span continuous concrete beams; two of them reinforced with pure glass fiber reinforced polymer (GFRP) bars and six of them reinforced with combinations of GFRP and steel bars. The continuous beams were tested under monotonically applied loading condition. The experimental load-deflection behavior and failure mode of the continuous beams were examined. In addition, the continuous beams were analyzed with a numerical method to predict the load-deflection curves and to compare them with the experimental results. Results show that there is a good agreement between the experimental and the theoretical load-deflection curves of continuous beams reinforced with pure GFRP bars and combinations of GFRP and steel bars.

Load-deflection analysis prediction of CFRP strengthened RC slab using RNN

  • Razavi, S.V.;Jumaat, Mohad Zamin;El-Shafie, Ahmed H.;Ronagh, Hamid Reza
    • Advances in concrete construction
    • /
    • v.3 no.2
    • /
    • pp.91-102
    • /
    • 2015
  • In this paper, the load-deflection analysis of the Carbon Fiber Reinforced Polymer (CFRP) strengthened Reinforced Concrete (RC) slab using Recurrent Neural Network (RNN) is investigated. Six reinforced concrete slabs having dimension $1800{\times}400{\times}120mm$ with similar steel bar of 2T10 and strengthened using different length and width of CFRP were tested and compared with similar samples without CFRP. The experimental load-deflection results were normalized and then uploaded in MATLAB software. Loading, CFRP length and width were as neurons in input layer and mid-span deflection was as neuron in output layer. The network was generated using feed-forward network and a internal nonlinear condition space model to memorize the input data while training process. From 122 load-deflection data, 111 data utilized for network generation and 11 data for the network testing. The results of model on the testing stage showed that the generated RNN predicted the load-deflection analysis of the slabs in acceptable technique with a correlation of determination of 0.99. The ratio between predicted deflection by RNN and experimental output was in the range of 0.99 to 1.11.

THE LOAD DEFLECTION RATE OF LOOPED WIRE AND ITS CHANGE BY HEAT TREATMENT (looped wire의 하중변형도와 열처리에 의한 변화)

  • Lee, Yong-Kook
    • The korean journal of orthodontics
    • /
    • v.16 no.1
    • /
    • pp.133-144
    • /
    • 1986
  • This study was conducted to evaluate the effects of loop formation and heat treatment upon the elastic properties of orthodontic wires. The specimens selected were .016', .018', .016x.022', and .018x.022' sized stainless steel (standard) and cobalt-chromium-nickel wires, and were divided into 7 groups as; 1. straight non-heat treated 2. U looped non-heat treated 3. L looped non-heat treated 4. Circle looped non-heat treated 5. U looped heat treated 6. L looped heat treated 7. Circle looped heat treated Heat treatment was performed in Big Jane furnace at 850' F for 3 minutes. The elastic limit and the elastic range of each specimen were determined by bending test, and load deflection rate was computed from those values. The findings were as follows; 1. The formation of loop resulted in increased load-deflection rate for both stainless steel and cobalt-chromium-nickel wires. 2. The heat treated group showed higher load-deflection rate than non-heat treated group, which was more apparent in cobalt-chromiumnickel wire than in stainless steel wire. 3. L loop had the highest load-deflection rate among 3 types of loops, followed by U loop and circle loop. 4. The specimens with greater diameter displayed the more increase in load-deflection rate by looping and heat treatment.

  • PDF

Measurement and Prediction of Long-term Deflection of Flat Plate Affected by Construction Load (시공하중에 의한 플랫 플레이트의 장기처짐 계측 및 해석)

  • Hwang, Hyeon-Jong;Park, Hong-Gun;Hong, Geon-Ho;Kim, Jae-Yo;Kim, Yong-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.615-625
    • /
    • 2014
  • Excessive long-term slab deflection caused by construction load is a critical issue for the design of concrete slabs, as long span flat plates become popular for tall buildings. In the present study, the effect of construction load causing early slab cracking on the long-term deflection was theoretically studied. On the basis of the result, a numerical analysis method was developed to predict the long-term deflection of flat plates. In the proposed method, immediate deflection due to slab cracking and long-term effect of creep and shrinkage were considered. To verify the construction load effect, long-term slab deflections were measured in actual flat plate buildings under construction. The results showed that the immediate deflection due to the construction load increased significantly the long-term deflection. The proposed method was used to predict the deflections of the buildings. The results were compared with the measurement results. The predictions agree well with the long-term deflections of flat plate affected by construction load.

Relationship between the CMOD and the Load-Line Deflection of Concrete (콘크리트의 균열개구 변위와 하중방향 변위관계)

  • 김석기
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.183-194
    • /
    • 1997
  • Traditional displacmir~nt measurement included an extrancous and cvrntlc. portmn due to test setup and support crushing. The magnitudc of this erroneous deformation was found to be of the same order as the actual displacement, leading to inaccurate determinations of fracture parameters. To overcome this problem, the load-CMOD relationship is a more reliable parameter for determining the fracture characteristics because it is unaffected by the specimen setup and any support crushing. An important step towards the use of load-(:MOD concept as a key fracture parameter depends on relating the CMODto the traditional load-line deflection. This investigation found that there was an unique linear relationship between the CMOD and the load-line deflection. The exact numeric value of relationship between the CMOD and the deflection. that is, the slope ofthe line, is discovered to be a material property. The relationship finds a problem with the existing IZIL,EM recommendations for. measuring the fracture energy of concrete. A proposal to correct the problem is made.

Anticipated and actual performance of composite girder with pre-stressed concrete beam and RCC top flange

  • Gurunaathan, K.;Johnson, S. Christian;Thirugnanam, G.S.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.117-124
    • /
    • 2017
  • Load testing is one of the important tests to determine if the structural elements can be used at the intended locations for which they have been designed. It is nothing but gradually applying the loads and measuring the deflections and other parameters. It is usually carried out to determine the behaviour of the system under service/ultimate loads. It helps to identify the maximum load that the structural element can withstand without much deflection/deformation. It will also help find out which part of the element causes failure first. The load-deflection behaviour of the road bridge girder has been studied by carrying out the load test after simulating the field conditions to the extent possible. The actual vertical displacement of the beam at mid span due to the imposed load was compared with the theoretical deflection of the beam. Further, the recovery of deflection at mid span was also observed on removal of the test load. Finally, the beam was checked for any cracks to assert if the beam was capable of carrying the intended live loads and that it could be used with confidence.