• Title/Summary/Keyword: load-carrying capacity degradation

Search Result 37, Processing Time 0.02 seconds

Eccentric Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 PSRC 합성기둥의 편심 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.249-260
    • /
    • 2017
  • In order to investigate the structural performance of a novel prefabricated-SRC column using bolt-connected steel angles(PSRC column), eccentric axial loading tests were performed for six PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and eccentricity ratio of axial load. The test results showed that, due to high axial-stiffness of the angles located at the corners of the cross section, the compressive load-carrying capacity and deformation capacity of the PSRC specimens were greater than those of the SRC specimens in the large eccentricity ratio of axial load. Closely spaced lateral steel plates and Z-shaped lateral steel plates improved lateral confinement, which increased the load-carrying capacity of the PSRC specimens. The combined flexural and axial load-carrying capacity of the specimens by tests and nonlinear numerical analysis were greater than the predictions by current design codes. The numerical analysis agreed well with the test results including the initial stiffness, peak strength, and post-peak strength degradation.

Dynamic behaviors of viscous damper on concrete archaized building with lintel-column joint

  • Xue, Jianyang;Dong, Jinshuang;Sui, Yan
    • Earthquakes and Structures
    • /
    • v.13 no.4
    • /
    • pp.409-419
    • /
    • 2017
  • In order to analyze the vibration control effect of viscous damper in the concrete archaized buildings with lintel-column joints under seismic action, 3 specimens were tested under dynamic excitation. Two specimens with viscous damper were defined as the controlled component and one specimen without viscous damper was specified as the non-controlled component. The loading process and failure patterns were obtained from the test results. The failure characteristics, skeleton curves and mechanical behavior such as the load-displacement hysteretic loops, load carrying capacity, degradation of strength and rigidity, ductility and energy dissipation of the joints were analyzed. The results indicate that the load-bearing capacity of the controlled component is significantly higher than that of the non-controlled component. The former component has an average increase of 27.4% in yield load and 22.4% in ultimate load, respectively. Meanwhile, the performance of displacement ductility and the ability of energy dissipation for the controlled component are superior to those of the non-controlled component as well. Compared with non-controlled component, equivalent viscous damping coefficients are improved by 27.3%-30.8%, the average increase is 29.0% at ultimate load for controlled component. All these results reflect that the seismic performance of the controlled component is significantly better than that of the non-controlled component. These researches are helpful for practical application of viscous damper in the concrete archaizing buildings with lintel-column joints.

Axial Load Test of Prefabricated Composite Columns Using Bolt-connected Steel Angles (볼트접합 앵글을 사용한 합성기둥의 중심축 압축실험)

  • Kim, Hyeon Jin;Hwang, Hyeon Jong;Park, Hong Gun;Kim, Dong Kwan;Yang, Jong Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.2
    • /
    • pp.147-158
    • /
    • 2017
  • The present study focused on the structural performance of newly developed prefabricated composite columns (PSRC composite column) using bolt-connected steel angles. Concentric axial loading tests were performed for four 2/3 scaled PSRC column specimens and two conventional SRC column specimens. The test parameters were the spacing and sectional configurations of lateral reinforcement, and width-to-thickness ratio of steel angles. The test results showed that the axial load-carrying capacity and deformation capacity of the PSRC column specimens were comparable to those of the conventional SRC column specimens. Closely spaced steel plates and Z-shaped steel plates for lateral reinforcement increased the deformation capacity of the PSRC column specimens. The load-carrying capacity was greater than the prediction by current design codes. Numerical analysis was performed for the specimens. The results agreed well with the test results in terms of initial stiffness, load-carrying capacity, except for strength degradation due to cover concrete spalling.

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • v.7 no.3
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

Effect of local web buckling on the cyclic behavior of reduced web beam sections (RWBS)

  • Akrami, Vahid;Erfani, Saeed
    • Steel and Composite Structures
    • /
    • v.18 no.3
    • /
    • pp.641-657
    • /
    • 2015
  • Application of reduced web beam section (RWBS) as a sacrificial fuse element has become a popular research field in recent years. Weakening of beam web in these connections may cause local web buckling around the opening area which can affect cyclic behavior of connection including: maximum load carrying capacity, strength degradation rate, dissipated energy, rotation capacity, etc. In this research, effect of local web buckling on the cyclic behavior of RWBS connections is investigated using finite element modeling (FEM). For this purpose, a T-shaped moment connection which has been tested under cyclic loading by another author is used as the reference model. Fracture initiation in models is simulated using Cyclic Void Growth Model (CVGM) which is based on micro-void growth and coalescence. Included in the results are: effect of opening corner radii, opening dimensions, beam web thickness and opening reinforcement. Based on the results, local web buckling around the opening area plays a significant role on the cyclic behavior of connection and hence any parameter affecting the local web buckling will affect entire connection behavior.

Behavior of repaired RAC beam-column joints using steel welded wire mesh jacketed with cement mortar

  • Marthong, Comingstarful
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.91-100
    • /
    • 2019
  • In this paper three damaged exterior RC beam-column joints made of recycled aggregate concrete (RAC) were repaired. The aim of the study was to restore back the lost capacity of the beam-column joint to the original state or more. A relatively cheap material locally available galvanized steel welded wire mesh (GSWWM) of grid size 25 mm was used to confine the damaged region and then jacketed with cement mortar. Repaired specimens were also subjected to similar cyclic displacement as those of unrepaired specimens. Seismic parameters such as load carrying capacity, ductility, energy dissipation, stiffness degradation etc. were analyzed. Results show that repaired specimens exhibited better seismic performance and hence the adopted repairing strategies could be considered as satisfactory. These findings would be helpful to the field engineers to adopt a suitable rapid and cost efficient repairing technique for restoring the damaged frame structural joints for post earthquake usage.

Risk-based optimum repair planning of corroded reinforced concrete structures

  • Nepal, Jaya;Chen, Hua-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.133-143
    • /
    • 2015
  • Civil engineering infrastructure is aging and requires cost-effective maintenance strategies to enable infrastructure systems operate reliably and sustainably. This paper presents an approach for determining risk-cost balanced repair strategy of corrosion damaged reinforced concrete structures with consideration of uncertainty in structural resistance deterioration. On the basis of analytical models of cover concrete cracking evolution and bond strength degradation due to reinforcement corrosion, the effect of reinforcement corrosion on residual load carrying capacity of corroded reinforced concrete structures is investigated. A stochastic deterioration model based on gamma process is adopted to evaluate the probability of failure of structural bearing capacity over the lifetime. Optimal repair planning and maintenance strategies during the service life are determined by balancing the cost for maintenance and the risk of structural failure. The method proposed in this study is then demonstrated by numerical investigations for a concrete structure subjected to reinforcement corrosion. The obtained results show that the proposed method can provide a risk cost optimised repair schedule during the service life of corroded concrete structures.

Non-invasive steel haunch upgradation strategy for seismically deficient reinforced concrete exterior beam-column sub-assemblages

  • Kanchanadevi, A.;Ramanjaneyulu, K.
    • Steel and Composite Structures
    • /
    • v.28 no.6
    • /
    • pp.719-734
    • /
    • 2018
  • Prior to the introduction of modern seismic guidelines, it was a common practice to provide straight bar anchorage for beam bottom reinforcement of gravity load designed building. Exterior joints with straight bar anchorages for beam bottom reinforcements are susceptible to sudden anchorage failure under load reversals and hence require systematic seismic upgradation. Hence in the present study, an attempt is made to upgrade exterior beam-column sub-assemblage of a three storied gravity load designed (GLD) building with single steel haunch. Analytical formulations are presented for evaluating the haunch forces in single steel haunch retrofit. Influence of parameters that affect the efficacy and effectiveness of the single haunch retrofit are also discussed. The effectiveness of the single haunch retrofit for enhancing seismic performance of GLD beam-column specimen is evaluated through experimental investigation under reverse cyclic loading. The single steel haunch retrofit had succeeded in preventing the anchorage failure of beam bottom bars of GLD specimen, delaying the joint shear damage and partially directing the damage towards the beam. A remarkable improvement in the load carrying capacity of the upgraded GLD beam-column sub-assemblage is observed. Further, a tremendous improvement in the energy dissipation of about 2.63 times that of GLD specimen is observed in the case of upgraded GLD specimen. The study also underlines the efficacy of single steel haunch retrofit for seismic upgradation of deficient GLD structures.

Strength deterioration of reinforced concrete column sections subject to pitting

  • Greco, Rita;Marano, Giuseppe Carlo
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.643-671
    • /
    • 2015
  • Chloride induced reinforcement corrosion is widely accepted to be the most frequent mechanism causing premature degradation of reinforced concrete members, whose economic and social consequences are growing up continuously. Prevention of these phenomena has a great importance in structural design, and modern Codes and Standards impose prescriptions concerning design details and concrete mix proportion for structures exposed to different external aggressive conditions, grouped in environmental classes. This paper focuses on reinforced concrete column section load carrying capacity degradation over time due to chloride induced steel pitting corrosion. The structural element is considered to be exposed to marine environment and the effects of corrosion are described by the time degradation of the axial-bending interaction diagram. Because chlorides ingress and consequent pitting corrosion propagation are both time-dependent mechanisms, the study adopts a time-variant predictive approach to evaluate residual strength of corroded reinforced concrete columns at different lifetimes. Corrosion initiation and propagation process is modelled by taking into account all the parameters, such as external environmental conditions, concrete mix proportion, concrete cover and so on, which influence the time evolution of the corrosion phenomenon and its effects on the residual strength of reinforced concrete columns sections.

Side-NSM composite technique for flexural strengthening of RC beams

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Saiful Islam, A.B.M.;Salam, Md. Abdus;Kim, Hung Mo
    • Computers and Concrete
    • /
    • v.20 no.4
    • /
    • pp.439-448
    • /
    • 2017
  • Reinforced concrete (RC) infrastructures often require strengthening due to error in design, degradation of materials properties after prolong utilization and increases load carrying capacity persuaded by new use of the structures. For this purpose, a newly proposed Side Near Surface Mounted (SNSM) composite technique was used for flexural strengthening of RC beam specimens. Analytical and non-linear finite element modeling (FEM) using ABAQUS were performed to predict the flexural performance of RC specimens strengthened with S-NSM using steel bars as a strengthening reinforcement. RC beams with various SNSM reinforcement ratios were tested for flexural performance using four-point bending under monotonic loading condition. Results showed significantly increase the yield and ultimate strengths up to 140% and 144% respectively and improved failure modes. The flexural response, such as failure load, mode of failure, yield load, ultimate load, deflection, strain, cracks characteristic and ductility of the beams were compared with those predicted results. The strengthened RC beam specimens showed good agreement of predicted flexural behavior with the experimental outcomes.