• Title/Summary/Keyword: load variation type

Search Result 267, Processing Time 0.025 seconds

A Comparison of Operating Characteristics for Industrial Water Cooler with Variation of Control Methods (제어방식에 따른 산업용 수냉각기의 운전 특성 비교)

  • Baek, Seung-Moon
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.99-105
    • /
    • 2014
  • This paper presents a comparison of operating characteristics for industrial water cooler with variation control methods. The performance analysis regarding the characteristics of condensation capacity, evaporation capacity, compressor load, COP of an on-off type cooler, a hot gas-bypass control type cooler and an inverter control type cooler with respect to the system load is reviewed, respectively. The primary results are as following: the variation of required compressor load of an on-off type cooler with respect to load is 5%, that of hot gas-bypass type is 18% and 66% for an inverter control type cooler. As the result shows, an inverter control type yields relatively huge difference of required compressor load compared to other types of control system. In terms of partial load, COP of an inverter control type cooler presents the highest value, and is considered as the optimized type for the used of the system involving frequent partial load.

Development of Vehicle Clutch Discs Cushion Variation Measurement Device Using a Variable Load Electric Press (하중 가변형 전동 프레스를 이용한 차량용 클러치 디스크 쿠션 변위량 측정 장치 개발)

  • Park, Seung-Gyu;Choi, Hae-Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.64-69
    • /
    • 2016
  • Vehicle clutch measurement for disc cushion variation was developed for the production of high quality Dual clutch transmissions. The developed device is composed of load cells for load measurement and LVDT for measuring the distance variation measurement in cushion variation. The servo motor-driven electric press for flexible loads that was developed was controlled by a PC-based HMI system, LabVIEW, and the device was able to continuously record real time measurement data with the accuracies of ${\pm}0.1\;kgf$ load and ${\pm}5{\mu}m$ cushion amount, which is far above the requirements of commercial vehicle standards.

The Effect of Load Conditions for the Power of Mg-Air Fuel Cell (부하조건이 마그네슘-공기연료전지의 출력특성에 미치는 영향)

  • Kim, Yong-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.3
    • /
    • pp.134-139
    • /
    • 2012
  • The power characteristics of the Mg-Air fuel cell were investigated with regard to variation of load conditions. The types of load current using for the Mg-Air fuel cell with 10% NaCl electrolyte were step type, ramp type and pulse type. It was found that transient phenomena occurred in the step current load, which is due to activate of the oxidation-reduction reaction process. And the transient time increase with the load current increase. In the load current of ramp type, the slop of voltage drop increased with current load slop ${\alpha}$ increase. The load voltage and power decreased according to the pulse period of load current decrease were attributed to the metal sludges.

Microcomputer-Based Constant Frequency Control of Generating System Driven by Hydraulic Power -Pump Displacement Control Type - (마이크로컴퓨터에 의한 유압구동식 발전장치의 정주파수 제어)

  • 정용길;이일영;김상봉;양주호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.53-63
    • /
    • 1991
  • This study suggests a new type shaft generator driven by hydraulic power suitable for small size vessels. Since the shaft generator system is very easy to be affected by disturbances such as speed variation of main engine and load variation of the generator, a robust servo control must be implemented to obtain stable electric power with constant frequency. Thus, in this study two types of controller design method-the reference following optimal control method and robust servo control method-are adopted to the controller design. In the experiment, static and dynamic characteristics of the shaft generator system according to the variation of input frequency setting, the speed variation of the pump and the load variation of the generator are investigated. From the considerations on the computer simulation results and experimental results, it is ascertained that the shaft generator system proposed in this study has good control performances.

  • PDF

The 24 Hourly Load Forecasting of the Election Day Using the Load Variation Rate (부하변동율을 이용한 선거일의 24시간 수요예측)

  • Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.6
    • /
    • pp.1041-1045
    • /
    • 2010
  • Short-term electric load forecasting of power systems is essential for the power system stability and the efficient power system operation. An accurate load forecasting scheme improves the power system security and saves some economic losses in power system operations. Due to scarcity of the historical same type of holiday load data, most big electric load forecasting errors occur on load forecasting for the holidays. The fuzzy linear regression model has showed good accuracy for the load forecasting of the holidays. However, it is not good enough to forecast the load of the election day. The concept of the load variation rate for the load forecasting of the election day is introduced. The proposed algorithm shows its good accuracy in that the average percentage error for the short-term 24 hourly loads forecasting of the election days is 2.27%. The accuracy of the proposed 24 hourly loads forecasting of the election days is compared with the fuzzy linear regression method. The proposed method gives much better forecasting accuracy with overall average error of 2.27%, which improved about average error of 2% as compared to the fuzzy linear regression method.

A new lateral load pattern for pushover analysis in structures

  • Pour, H. Gholi;Ansari, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.6 no.4
    • /
    • pp.437-455
    • /
    • 2014
  • Some conventional lateral load patterns for pushover analysis, and proposing a new accurate pattern was investigated in present research. The new proposed load pattern has load distribution according weight and stiffness variation in height and mode shape of structure. The assessment of pushover application with mentioned pattern in X type braced steel frames and steel moment resisting frames, with stiffness and mass variation in height, was studied completely and the obtained results were compared with nonlinear dynamic analysis method (including time history analysis). The methods were compared from standpoints of some basic parameters such as displacement, drift and shape of lateral load pattern. It is concluded that proposed load pattern results are closer to nonlinear dynamic analysis (NDA) compared to other pushover load patterns especially in tall and medium-rise buildings having different stiffness and mass during the height.

Characterization on the Variation of Streamflow at the Unit Watershed for the Management of Total Maximum Daily Loads - in Guem River Basin - (수질오염총량관리 단위유역의 유량변화 특성분석 - 금강수계를 대상으로 -)

  • Park, Jun Dae;Oh, Seung Young;Choi, Ok Youn
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.914-925
    • /
    • 2011
  • The variation of streamflow is regarded as one of the most influential factors on the fluctuation of water quality in the stream. The characteristics of the variation should be taken into account in the plans for the management of Total Maximum Daily Loads (TMDLs). This study analysed and characterized spatial distribution and temporal variation of streamflow at each unit watershed in Guem-river basin. For the analysis of the distribution of streamflow, the type and the extent of the distribution were investigated for the unit watershed. For the analysis of the variation, short and long term changes of streamflow were examined. The result showed that most of the distributions were not log-normalized and the extent of variation tends to be greater at the unit watershed placed on the tributaries in the basin. A kind of margin could be granted to the unit watershed involving high variations so as to establish the water quality goal and load allotment more reasonably and effectively in view of whole waterbody.

Shear Failure Behaviour of Reinforced Concrete Deep Beam Strengthened by Carbon Fiber Sheets (탄소섬유시트로 보강된 춤이 큰 철근콘크리트 보의 전단파괴거동(剪斷破壞擧動))

  • Cho, Su-Je;Son, Sung-Hun;Park, Sung-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.4
    • /
    • pp.145-153
    • /
    • 1999
  • The major objective of this study is to investigate experimentally the shear strengthening effect of carbon fiber sheets upon reinforced concrete deep beam and shear failure behavior variation of reinforced concrete deep beam strengthened by carbon fiber sheets. Tests are carried out with 6 specimens were shear failure at first loading tests, and with parameters including the types of shear strengthening of carbon fiber sheets (I type, S type, U type), and plies of sheets (2 ply and 1 ply). From the results of test, analyzed load-deflection of midspan, strain variation of main bars and transverse reinforcement, maximum load capacity of strengthened specimens, and compared with the previous test results.

  • PDF

Evaluation of Failure Behavior of a Pipe Containing Circumferential Notch-Type Wall Thinning (원주방향 노치형 감육부를 가진 배관의 손상거동 평가)

  • Kim, Jin-Weon;Park, Chi-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1295-1302
    • /
    • 2003
  • In order to evaluate a failure behavior of pipe with notch-type wall thinning, the present study performed full-scale pipe tests using the 102mm, Schedule 80 pipe specimen simulated notch- and circular-type thinning defects. The pipe tests were conducted under the conditions of both monotonic and cyclic bending moment at a constant internal pressure of 10 MPa. From the results. of experiment the failure mode, load carrying capacity, deformation ability, and fatigue life of a notch-type wall thinned pipe were investigated, and they were compared with those of a circular-type wall thinned pipe. The failure mode of notched pipe was similar to that of circular-type thinned pipe under the monotonic bending load. Under the cyclic bending load, however, the mode was clearly distinguished with variation in the shape of wall thinning. The load carrying capacity of a pipe containing notch-type wall thinning was about the same or slightly lower than that of a pipe containing circular-type wall thinning when the thinning area was subjected to tensile stress, whereas it was higher than that of a pipe containing circular-type thinning defect when the thinning area was subjected to compressive stress. On the other hand, the deformation ability and fatigue life of a notch-type wall thinned pipe was lower than those of a circular-type wall thinned pipe.

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF