• Title/Summary/Keyword: load transfer measuring system

Search Result 19, Processing Time 0.025 seconds

Online Parameter Estimation for Wireless Power Transfer Systems Using the Tangent of the Reflected Impedance Angle

  • Li, Shufan;Liao, Chenglin;Wang, Lifang
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.300-308
    • /
    • 2018
  • An online estimation method for wireless power transfer (WPT) systems is presented without using any measurement of the secondary side or the load. This parameter estimation method can be applied with a controlling strategy that removes both the receiving terminal controller and the wireless communication. This improves the reliability of the system while reducing its costs and size. In a wireless power transfer system with an LCCL impedance matching circuit under a rectifier load, the actual load value, voltage/current and mutual inductance can be reflected through reflected impedance measuring at the primary side. The proposed method can calculate the phase angle tangent value of the secondary loop circuit impedance via the reflected impedance, which is unrelated to the mutual inductance. Then the load value can be determined based on the relationships between the load value and the secondary loop impedance. After that, the mutual inductance and transfer efficiency can be computed. According to the primary side voltage and current, the load voltage and current can also be detected in real-time. Experiments have verified that high estimation accuracy can be achieved with the proposed method. A single-controller based on the proposed parameter estimation method is established to achieve constant current control over a WPT system.

Estimation of Dynamic Load of the Utility in Building by TPA Method (TPA 기법을 이용한 건물 내 설비 동하중 산정)

  • Jeong, Min-Ki;Lee, Seong-Soo;Kim, Yong-Ku;Ahn, Sang-Kyung;Lee, Sang-Yeop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.773-780
    • /
    • 2009
  • The facility equipments generate dynamic force on building floor and the force can be measured with force transducer. However, this method depends on the measuring capacity or range of sensor, or mounts installation condition of equipments. Because of this restricting condition on force measuring system, this paper suggests a indirect method, the TPA(transfer path analysis) method, that produces a closely approximate dynamic force of equipments. This method calculates the dynamic force by using transfer response function. Firstly, the calculated dynamic force of impact load and continuous load was respectively compared with the sensor-measured value to examine the accuracy of TPA method. After that, the dynamic force and response induced by large facility equipments - a cooling tower, AHU and a large ventilator - were calculated by TPA method and the validity of these value were examined.

Evaluation of Skin Friction on Large Drilled Shaft (대구경 현장타설말뚝의 주면 마찰력 평가)

  • Hong Won-Pyo;Yea Geu-Guwen;Lee Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.93-103
    • /
    • 2005
  • Both static pile load test with load transfer measuring system and the pile dynamic load test are performed to estimate the skin friction and behavior characteristics of a large drilled shaft. And the numerical modeling of large drilled shaft is performed by applying the FDM program. Since the magnitude of friction resistance depends on the relative displacement between soil and shaft, load and displacement at the arbitrary depth along the large drilled shaft are estimated to analyze the correlation. According to the measuring results of load transfer, unit skin friction along the large drilled shaft was fully mobilized at gravel layer in the middle of shaft and the frictional resistance transmitted to bedrock was relatively small. Also, even for the same drilled shaft, the results of PDA and static load test are different with each other and the difference is discussed.

Graphical Design Plane Analysis for Series-Compensated Resonant Energy Links of Inductive Wireless Power Transfer Systems

  • Jeong, Chae-Ho;Choi, Sung-Jin
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1440-1448
    • /
    • 2019
  • In wireless power transfer systems, it is important to design resonant energy links in order to increase the power transfer efficiency and to obtain desired system performances. This paper proposes a method for designing and analyzing the resonant energy links in a series-series configured IPT (inductive power transfer) system using the FOM-rd plane. The proposed FOM-rd graphical design plane can analyze and design the voltage gain and the power efficiency of the energy links while considering changes in the misalignment between the coils and the termination load condition. In addition, the region of the bifurcation phenomena, where voltage gain peaks are split over the frequency, can also be distinctly identified on the graphical plane. An example of the design and analysis of a 100 W inductive power transfer system with the proposed method is illustrated. The proposed method is verified by measuring the voltage gain and power efficiency of implemented hardware.

Measurement of Heat (Mass) Transfer Coefficient on the Blade Surfaces of a Linear Turbine Rotor Cascade With a Four-Axis Naphthalene Profile Measuring System (4-축 나프탈렌 승화깊이 측정시스템을 이용한 터빈 블레이드 표면에서의 열(물질)전달계수 측정)

  • Kwon, Hyun-Goo;Lee, Sang-Woo;Park, Byung-Kyu
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.42-47
    • /
    • 2001
  • The heat (mass) transfer characteristics on the blade surface of a first-stage turbine rotor cascade for power generation has been investigated by employing the naphthalene sublimation technique. A four-axis profile measurement system is successfully developed for the measurements of the local heat (mass) transfer coefficient on the curved blade surface. The experiment is carried out at the free-stream Reynolds number and turbulence intensity of $2.09\times10^5$ and 1.2%. The results on the blade surfaces show that the local heat (mass) transfer on the suction surface is strongly influenced by the endwall vortices, but that on the pressure surface shows a nearly two-dimensional nature. The pressure surface has a more uniform distribution of heat load than the suction one.

  • PDF

A study on the saving of energy consumption load using electrical heat control system (전기적 열제어 시스템을 사용한 에너지 소비량 감소에 관한 연구)

  • Han, Kyu Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.49 no.1
    • /
    • pp.58-66
    • /
    • 2013
  • Most of steam power plant in Korea are heating the feed water system to prevent freezing water flowing in the pipe in winter time. The heating system is operated whenever the ambient temperature around the power plant area below 5 degree Centigrade. But this kind of heat supplying system cause a lot of energy consuming. If we think about the method that the temperature of the each pipe is controled by attaching the temperature measuring sensor like RTD sensor and heat is supplied only when the outer surface temperature of the pipe is under 5 degree Centigrade, then we can save a plenty of energy. In this study, the computer program package for simulation is used to compare the energy consumption load of both systems. Energy saving rate is calculated for the location of Youngweol area using the data of weather station in winter season, especially the January' severe weather data is analyzed for comparison. Various convection heat transfer coefficients for the ambient air and the flowing water inside the pipe was used for the accurate calculation. And also the various initial flowing water temperature was used for the system. Steady state analysis is done previously to approximate the result before the simulation. The result shows that the temperature control system using RTD sensor represents the high energy saving effect which is more than 90% of energy saving rate. Even in the severe January weather condition, the energy saving rate is almost 60%.

The Behaviour Characteristics of Reinforced Limestone Cavities by High Pressure Jet-Grouting (고압분사주입공법으로 보강된 석회암공동의 거동특성)

  • Hong, Won-Pyo;Hong, Kun-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.1
    • /
    • pp.7-16
    • /
    • 2008
  • Limestone area have mostly certain geological defects such as the internal cavities due to melting and fractured zone by external pressures. Especially, in case of constructing grand bridge, the treatment of the limestone cavities area having the geological defects is inevitable. In order to reduce foundation settlement and to reinforce the ground in the limestone cavities area, high pressure jet grouting has been carried out as a countermeasure method. Despite the fact that high pressure jet grouting method has already adopted at a lot of limestone cavities area, but the amount of research and technical data on the high pressure jet grouting have not been accumulated properly so for. Therefore this paper intends to investigate the strength characteristics and deformation characteristics for reinforced limestone cavities area by high pressure jet grouting method. In addition, load carrying capacity obtained by static pile load test with load transfer measuring system is analyzed.

Development and Application of A Smart Anchor with Optical FBG Sensors (FBG 센서를 내장한 스마트 앵커의 개발과 적용)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Lee, Seung-Rae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.393-398
    • /
    • 2008
  • With the substantial increase of the size of structure, management and monitoring of excavation for the foundation construction becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, was adapted to develope a smart anchor. A series of pullout tests were performed to verify the feasibility of smart anchor and find out the load transfer mechanism around the steel wire fixed to rock with grout.

  • PDF

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

A Study on the Frequency Response Signals of a Servo Valve (서보밸브의 주파수 응답 신호에 관한 연구)

  • Yun, Hongsik;Kim, SungDong
    • Journal of Drive and Control
    • /
    • v.18 no.1
    • /
    • pp.17-23
    • /
    • 2021
  • The flow signal or spool position signal is used to determine the dynamic characteristics of directional control valves. Alternatively, the signal of spool position or flow can be replaced with the velocity of a low friction, low inertia actuator. In this study, the frequency response of the servo valve equipped with a spool position transducer is measured with a metering cylinder. The input signal, spool displacement, load pressure, and velocity of the metering cylinder are measured, and the theoretical results from the transfer function analysis are verified. The superposition rule for magnitude ratio and phase angle was found to be always applicable among any signal type, and it was found that the load pressure signal is not appropriate for use as the signal for measuring the frequency response of a servo valve. It was confirmed that the frequency response of a servo valve using metering cylinder was similar to the results from a spool displacement signal. The metering cylinder used for measuring the frequency response of a servo valve should be designed to have sufficiently greater bandwidth frequency than the bandwidth frequency of the servo valve.