• Title/Summary/Keyword: load test

Search Result 8,113, Processing Time 0.037 seconds

Vibration Fatigue Analysis of Automotive Fuel Tank Using Transfer Function Method (Transfer Function Method를 이용한 자동차 연료탱크의 진동 피로 해석에 대한 연구)

  • Ahn, Sang Ho
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.27-33
    • /
    • 2020
  • In this paper, the process of predicting efficient durability performance for vibration durability test of automobile parts using vibration test load on automobile fuel tank is presented. First of all, the common standard load that can be applied to the initial development process of the automobile was used for the fuel tank and the vulnerability of the fuel tank to the vibration fatigue load was identified through frequency response analysis. In addition, the vulnerability of the fuel tank was re-enacted through vibration durability test results, and the scale factor was applied to the standard load. In order to predict the vibration durability performance required for detailed design, vibration fatigue analysis was performed on the developed vehicle with the frequency of vibration severity equivalent to the durability test, and the vulnerability and life span of the fuel tank were identified through the process of applying weights to these selected standard loads, thereby reducing the test time of the development vehicle.

Development of Load Cell to Measure Contact Force of Pantograph (판토그라프 접촉력 측정을 위한 스트레인 게이지 내장형 센서 개발)

  • Park, Chan-Kyoung;Paik, Jin-Sung;Kim, Young-Guk;Kim, Ki-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.947-953
    • /
    • 2010
  • The KTX-Sancheon has been commercially operating on the high-speed line since March. 2. In order to verify the performance of high-speed train and core equipments such as current collection system, sophisticated tests and evaluating procedures should have been considering. In this paper, the load cell with a built-in strain-gauge which developed to improve measuring method of contact force between the pantograph and catenary system is introduced. The static test results of the load cell shows that its design is very suitable and applicable for the dynamic test and on-line test. After the test and evaluation of load cell's dynamic calibration with pantograph, we will be applied to test interaction characteristics between the pantograph and catenary system on the high-speed line.

  • PDF

Study on the Prediction of the Work-Energy to the Maximum Load and Impact Bending Energy from the Bending Properties (국산 소경재의 휨 성질을 이용한 충격에너지와 최대하중까지 일-에너지 예측연구)

  • Cha, Jae-Kyung
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.5
    • /
    • pp.350-357
    • /
    • 2008
  • This research investigates the bending properties to predict the work-energy to maximum load and impact bending energy from static bending and impact bending test. Specimens were prepared from lumber made of thinning crop-trees. Matched specimens were used for MC 12% and green moisture specimens to measure the effect of moisture content on the absorbed energy from static and impact bending tests. The bending properties such as MOE, MOR, etc. is a good predictor to investigate the work-energy and work-energy per unit volume from static bending and impact bending test. The impact bending energy is increased with increasing moisture content. However, the work to maximum load from static bending test is increasing with increasing the MC only for higher density species.

  • PDF

Strength Evaluation of Bogie by Loading Test (하중시험에 의한 대차의 강도 평가)

  • Yoon Sung-Cheol;Kwon Sung-Tae;Kim Myung-Rong;Lee Kang-Won
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.622-627
    • /
    • 2004
  • This paper describes the result of load test of bogie frame. The purpose of test is to evaluate an safety which bogie frame shall be considered fully sufficient rigidity so as to satisfy proper system function under maximum load. Bogie system consist of bogie frame, suspensions, wheel-sets, brake system and transmission system. Among these component, the bogie frame is the most significant component subjected to the vehicle and passenger loads. The evaluation method is used the JIS E 4207 specification throughout the static load test. The test results have been very safety and stable for design load conditions.

  • PDF

A Study on the Structural Analysis and Test of the Bogie Frame According to UIC Code (UIC code에 따른 대차 프레임 구조해석 및 시험에 관한 연구)

  • 최중호;송시엽;천홍정;전형용;박형순
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.884-891
    • /
    • 2002
  • This report is the result performed the structural analysis and the static and fatigue load test of bogie frame for the purpose of designing and verifying the bogie frame which satisfy the load condition required in the UIC code. This investigation is proposed the efficient draft of the design to satisfy the load condition required in the UIC code. And It is performed the structural analysis to evaluate the static strength and the fatigue life of the patient material and the welded part. Also, This is proposed the efficient draft of the test to satisfy the method of the static and fatigue test required in the UC code. And it is carried out the static and the fatigue load test to verify it. We can designed the bogie frame in compliance with UIC 515-4 and 615-4 code.

  • PDF

Structural Behavior of a RC Bridge Slab Retrofitted with Carbon Fiber Sheet under Large Repeated Load

  • Park, Hae-Geun
    • KCI Concrete Journal
    • /
    • v.14 no.2
    • /
    • pp.61-68
    • /
    • 2002
  • An experimental investigation on the flexural fatigue behavior of a RC bridge slab retrofitted with Carbon Fiber Sheet (CFS) is presented. The test slab was almost identical to the slab of a highway viaduct in terms of the amount of reinforcement, quality of concrete and thickness of the slab, which was 18cm. Repeated load corresponding to 3.0, 4.5 or 6.0 times of the design load was applied to the test slab. Normal type and high-elastic modulus type of CFS were used for strengthening. The test slabs were loaded in dry or wet condition. Two different types of an-choring system were adapted. Some of the test slabs were damaged by the repeated load and retrofitted by CFS, then loaded again to see the improvement of the fatigue life. Infrared Thermography was also performed to investigate the debonding condition of CFS. From the test results, Carbon Fiber Sheet can be applied to the RC bridge slabs as a feasible retrofitting material.

  • PDF

Modeling and verification of generator/control system of Seo-Inchon combined-cycle plant by load rejection test (부하차단시험에 의한 서인천복합화력 발전기.제어계의 모델링 및 검증)

  • 최경선;문영환;김동준;추진부;류승헌;권태원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.501-510
    • /
    • 1996
  • The gas-turbine generator of Seo-Incheon combined-cycle plant was tested for derivation of a model for dynamic analysis. Load rejection and AVR step test was performed to get the dynamic response of generator. The parameters of generator/control system model were determined by these measured data. No-load saturation test was performed for the saturation characteristics of the generator under steady state. V-curve test was also performed so as to find exact generator parameters. Q-axis parameters of generator was derived by measuring power angle. AVR and governor constants have been tuned by their oscillatory period and setting time characteristics. The derived parameters of generator control system is verified by one-machine infinite bus system simulation. (author). 7 refs., 20 figs., 5 tabs.

  • PDF

Evaluation of Field Calibration Test on Rail for Train Wheel Force Measurement

  • Sim, Hyoung-Bo;Yeo, Inho
    • International Journal of Railway
    • /
    • v.8 no.1
    • /
    • pp.1-4
    • /
    • 2015
  • An accurate measurement of the train-track interaction forces is important for track performance evaluation. In the field calibration test as a wheel load measurement process, the calibration system creates a different boundary condition in comparison with that in the train wheel passage. This study aims to evaluate a reliability of the field calibration test in the process of wheel load measurement. Finite element models were developed to compare the deformed shapes, bending moment and shear force profiles on the rail section. The analysis results revealed that the deformed shapes and their associated bending moment profiles on the rail are significantly different in two numerical simulations of the calibration test and the train wheel load passage. However, the shear stress profile on the rail section of the strain gauge installation in the field was almost identical, which may imply that the current calibration test is sufficiently reliable.

Experimental Performance Verification of Load Carrying Capacity Algorithm of Bridges using Ambient Vibration (상시진동을 이용한 교량 내하력 추정 알고리즘의 실험적 성능 검증)

  • Lee, Woo-Sang;Park, Ki-Tae;Han, Sung-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.3
    • /
    • pp.83-90
    • /
    • 2010
  • In this study, it is conducted that the performance verification of the ambient load carrying capacity algorithm using long-term measurement systems of bridges. For this purpose, a steel-box type model bridge is fabricated and the public load carrying capacity of a steel-box model bridge is estimated by conducting the numerical analysis and load test. In addition, we compare the public load carrying capacity with the estimated result of a steel-box model bridge using the ambient load carrying capacity algorithm. By the assessment result, it is shown that the estimated ambient load carrying capacity is the difference of approximately 6.0 percentages as compared with the public load carrying capacity.

Testing of Load Capacity of a Foil Thrust Bearing

  • Kim, Choong Hyun;Park, Jisu
    • Tribology and Lubricants
    • /
    • v.34 no.6
    • /
    • pp.300-306
    • /
    • 2018
  • In this study, the performance of foil thrust bearings was investigated by performing bearing take-off and load capacity tests, using an in-house designed and manufactured vertical bearing test rig. The mean take-off rotational speed and maximum load capacity of the bearing specimen were ~18,000 rpm and ~80 kPa, respectively. The vertical bearing test rig was observed to yield higher coefficients of friction and frictional torques than a horizontal bearing test rig under identical test conditions. This was a result of its structural characteristics, in that the bearing specimen is placed atop the thrust runner, which keeps it from being separated from the runner after the bearing take-off. In addition, bearing take-off was observed at a higher runner rotational speed as this structure keeps air from flowing between the top foil and runner surfaces, which requires a higher runner speed. The parallel alignment between the bearing specimen and runner surfaces can be maintained within a certain range more easily in a vertical test rig than in a horizontal test rig. Because of these advantages, Korean Industrial Standard, KS B 2060, recommends a vertical bearing test rig as the standard test device for foil thrust bearings.