• Title/Summary/Keyword: load pressure distribution

Search Result 360, Processing Time 0.027 seconds

A Study of Earth Pressure and Deformation acting on the Flexible Wall in Soft Soil (연약지반 흙막이벽에 작용하는 토압 및 변위에 관한 연구)

  • Park, Yeong-Mog;Chung, Youn-In
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.215-222
    • /
    • 2003
  • Recently the deep and large excavations are performed near the existing buildings in urban areas for the practical use of underground space. The earth pressure due to the excavation are varied according to the conditions of ground, the depth of excavation, the construction methods, and the method of supporting the earth pressure etc.. In this study, not only the behavior of axial load and distribution of earth pressure on the flexible wall according to stage excavation depth but also magnitude and distribution of lateral deformation, and the equivalent earth pressure from strut axial loads were analyzed by the results measured from instruments such as, load cells, strain gauges, and in-situ inclinometer, on the field of subway construction. According to the results of this study in the case of stage excavation the earth pressure of soft clayey soil is compounded with Terzaghi-Peck and Tschebotarioff.

Experimental Investigation on the Inlet Pressure Build-Up at the Entrance of a Large Tilting Pad Journal Bearing (대형 틸팅패드 저어널베어링의 패드 입구에서 발생하는 선단압력에 관한 실험적 연구)

  • 하현천;김경우;김영춘;김호종
    • Tribology and Lubricants
    • /
    • v.9 no.2
    • /
    • pp.22-28
    • /
    • 1993
  • The experimental investigation on the inlet pressure of a large tilting pad journal bearing is studied. The continuous distribution of the film pressure and film thickness are measured along with the shaft speed and bearing load for various flow rates. Considerably large inlet pressure is observed at the entrance of each pad, especially lower pads. The inlet pressure increases with the increase of shaft speed as well as bearing load, but it is almost independent on the folw rate and the oil supply temperature. Because of the inlet pressure, the upper pads always keep up slight wedge film shape which are almost parallel to the journal surface, and spragging is not observed in the upper pads with no preload.

Evaluation of Similitude Laws for Dissipation Velocity of Excess Pore Pressure after Liquefaction using Impulse Load Tests (충격하중시험을 이용한 액상화 후 과잉간극수압 소산속도의 상사비 연구)

  • Kim, Dong-Hwi;Ha, Ik-Soo;Hwang, Jae-Ik;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.714-721
    • /
    • 2004
  • The purpose of this study is to find out the similitude laws for dissipation velocity of excess pore pressure after liquefaction according to magnitude of input accelerations and height of model soils from the results of impulse load tests. In impulse load tests, model soils were constructed to the height of 25cm, 50cm, and 100cm in acrylic tubes whose inside diameters were 19cm and 38cm respectively, and impulse loads were applied at the bottom of each model soil to liquefy the entire model soil. Excess pore pressure distribution by depth and settlement of soil surface were measured in each test. Dissipation curves of excess pore pressure measured in each tests were simulated by solidification theory, and dissipation velocities of excess pore pressure were determined from the slope of simulated dissipation curves. From the results of impulse load tests, dissipation velocity of excess pore pressure was not affected by magnitude of input acceleration, and from this fact, dissipation process was proved to be different from dynamic phenomenon. However, dissipation velocity of excess pore pressure increased as height of model soil increased and showed little difference as diameter of model soil increased. Therefore, the similitude law for dissipation velocity could be expressed by the similitude law for model height to 0.2 without regard to the diameter of model soil.

  • PDF

Study on the Load-Carrying Capacity of Finite-Width Slider Bearing with Wavy Surface (표면웨이브가 존재하는 유한폭 슬라이더 베어링의 지지하중 특성에 관한 연구)

  • Shin, Jung-Hun;Lee, Gi-Chun;Park, Jong-Won;Kang, Bo-Sik;Kim, Kyung Woong
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Slider bearing is a widely used load-carrying element in the industry. While a large number of studies have investigated the effect of overall surface curvature, very few have considered sinusoidal surface. Recently, consideration of surface roughness/waviness or intentional wave design has been identified as an important issue in the manufacture of hard disk driver, mechanical seal, hydraulic machine, and etc. This study investigated the load-carrying capacity of a finite-width slider bearing with a wavy surface. Film thickness ratios, length-width ratio, ambient pressure, amplitude, and partial distribution were selected as the simulation parameters. The calculation results showed that the load-carrying capacity rapidly varied at small film thickness ratio, but the waviness near the area of minimum film thickness made much more influence with an increase in film thickness ratio. As the length-width ratio of bearing was increased, ambient pressure became more influential at small film thickness ratios. Furthermore a particular partial distribution of the wavy area led to higher load-carrying capacity than did the whole distribution. Consequently, the results of this study are expected to be of use in surface micro-machining of finite-width slider bearings.

Fatigue Evaluation of Steam Separators of Heat Recovery Steam Generators According to the ASME Boiler and Pressure Vessel Code (ASME Boiler & Pressure Vessel Code에 따른 배열회수보일러 기수분리기의 피로 평가)

  • Lee, Boo-Youn
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.4
    • /
    • pp.150-159
    • /
    • 2018
  • The present research deals with a finite element analysis and fatigue evaluation of a steam separator of a high-pressure evaporator for the Heat Recovery Steam Generator (HRSG). The fatigue during the expected life of the HRSG was evaluated according to the ASME Boiler and Pressure Vessel Code Section VIII Division 2 (ASME Code). First, based on the eight transient operating conditions prescribed for the HRSG, temperature distribution of the steam separator was analyzed by a transient thermal analysis. Results of the thermal analysis were used as a thermal load for the structural analysis and used to determine the mean cycle temperature. Next, a structural analysis for the transient conditions was carried out with the thermal load, steam pressure, and nozzle load. The maximum stress location was found to be the riser nozzle bore, and hence fatigue was evaluated at that location, as per ASME Code. As a result, the cumulative usage factor was calculated as 0.00072 (much less than 1). In conclusion, the steam separator was found to be safe from fatigue failure during the expected life.

Earth Pressure Distribution on Retention Walls in the Excavation of Multi -Layered Ground (다층지반 굴착시 토류벽에 작용하는 토압분포)

  • 이종규;전성곤
    • Geotechnical Engineering
    • /
    • v.9 no.1
    • /
    • pp.59-68
    • /
    • 1993
  • In deep excavations for creation of underground spaces, it would be difficult to predict earth pressure, especially multilayered ground including rock strata. The earth pressures and displacements on the retention walls are measured by load cell, strain gauge and inclinometer which were installed at struts or anchors at 4 deep excavation sites in Seoul area. In this paper, the measured earth pressure from the struts or anchors are compared with Peck's empirical values, and the coefficient of the earth pressures for each strata and horizontal wall displacement are investigated. The coefficient of earth pressure distribution, a(0.65zka), in the flexible and the rigid walls was about 74% and 88% of Peck's value respecitively. The measured earth pressure distributions for the 4 sites showed about 70%∼80% of Peck's empirical values and the average earth pressure coefficients based on the measured data were 0.3 for the felted layer, 0.23 for the weathered rock and 0.19 for the weak rock. The maximum w리1 displacements were found to be less 0.2% of excavation depth.

  • PDF

Characteristic of Wind Pressure Distribution on the Roof of Hyperbolic Paraboloid Spatial Structures (쌍곡선포물선 대공간 구조물의 측벽개구율에 따른 지붕의 풍압특성)

  • You, Jang-Youl;You, Ki-Pyo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.51-57
    • /
    • 2013
  • There can be diverse causes in the destruction of a large space structure by strong wind such as characteristics of construction materials and changes in internal and external wind pressure of the structure. To evaluate the wind pressure of roof against the large space structure, wind pressure experiment is performed. However, in this wind pressure experiment, peak internal pressure coefficient is set according to the opening of the roof in Korea wind code. In this article, it was tried to identify the change of internal pressure coefficient and the characteristics of wind pressure coefficient acting on the roof by two kinds of opening on the side of the structure with Hyperbolic Paraboloid Spatial Structures roof. When analyzing internal pressure coefficient according to roof shape, it was found that minimum (52%) and maximum (30%~80%) overestimation was made comparing to partial opening type proposed in the current wind load. It is judged that evaluation according to the opening rate of the structure should be made to evaluate the internal pressure coefficient according to load.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

Sub-surface Stress Analysis beneath the Contact Surface of Spur Gear Teeth (스퍼 기어 접촉 치면의 내부응력 해석)

  • Kwang-Jin, Lee;Hyung-Ja, Kim
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.3
    • /
    • pp.64-70
    • /
    • 2004
  • The sub-surface stress field beneath the spur gear's contact surface in lubricated condition has been analysed. The surface pressure was obtained by the elasto-hydrodynamic lubrication analysis using the accurate geometric clearances around the contact region of the teeth. The sub-surface stress field was calculated by using the Love's rectangular patch solution. The analysis results show that the sub-surface stress distribution is quite dependent on the surface pressure distribution. The pattern of sub-surface stress field is similar to that of the external load. The depth where the maximum effective stress occurs is not proportional to the intensity of the external load.

  • PDF

Dynamic instability of functionally graded material plates subjected to aero-thermo-mechanical loads

  • Prakash, T.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.4
    • /
    • pp.435-450
    • /
    • 2005
  • Here, the dynamic instability characteristics of aero-thermo-mechanically stressed functionally graded plates are investigated using finite element procedure. Temperature field is assumed to be a uniform distribution over the plate surface and varied in thickness direction only. Material properties are assumed to be temperature dependent and graded in the thickness direction according to simple power law distribution. For the numerical illustrations, silicon nitride/stainless steel is considered as functionally graded material. The aerodynamic pressure is evaluated based on first-order high Mach number approximation to the linear potential flow theory. The boundaries of the instability region are obtained using the principle of Bolotin's method and are conveniently represented in the non-dimensional excitation frequency-load amplitude plane. The variation dynamic instability width is highlighted considering various parameters such as gradient index, temperature, aerodynamic and mechanical loads, thickness and aspect ratios, and boundary condition.