• 제목/요약/키워드: load modelling

검색결과 395건 처리시간 0.026초

탑상형 공동주택의 모델링 방법론에 관한 연구 (A Study on the Modeling Methods of Tower Type Apartment House)

  • 이재혁;윤성훈;최원기
    • 한국태양에너지학회 논문집
    • /
    • 제30권3호
    • /
    • pp.39-46
    • /
    • 2010
  • This study is focused on the effect of thermal load according to the various plan types in tower-type apartment in Korea. So, we chose the '』' type model in order to analyze the shading effect of the plan type. The main results are as follows. In chosen model, cooling energy demands are more sensitive than heating ones when is compared with the two methods. And there are about 10% deviations between new and conventional method. Because new method considers more detailed than conventional one about the building geometries. We also found that this building type affects to the about 3 floors from the top and it doesn't affect to the thermal load in lower floors. From these facts, we suggest new modeling method to the similar researches that will be analyzed the thermal load on the tower type apartment in Korea. Also there is no difference of the thermal load in each azimuth between simple and detailed modeling method. Consequently, we judge that this new method considered the shading effect will be used a lot to the similar analysis in tower type apartment in Korea.

전력선 통신 채널 모델링에 관한 연구 (A study on the channel modeling for power line communication)

  • 정영화
    • 정보학연구
    • /
    • 제6권3호
    • /
    • pp.1-10
    • /
    • 2003
  • 본 논문은 전력선 통신 실험을 보다 빠르고 효율적으로 수행할 수 있는 전력선 채널 모델링에 관한 것이다. 용량성 부하 채널 시뮬레이터는 댁내망 전력선 모뎀 개발에 있어서 필수적인 실험 장비이다. 실제 전력선 채널 환경을 모델링한 이 실험 장비를 이용한 총 245 개의 용량성 부하 채널에 대하여 주파수 응답법에 의한 채널 모델링을 행하였다. 용량성 부하 채널 시뮬레이터를 사용한 실험 데이터 결과와 모델링된 채널 필터를 통과한 결과를 비교하였을 때 큰 오차 없이 실제 전력선 통신상의 용량성 부하 실험을 대체할 수 있음을 확인하였다.

  • PDF

수질오염총량관리를 위한 비점배출계수 산정 - 특정 기준유량 시기의 강우배출비 (Estimation of Nonpoint Discharge Coefficient for the Management of Total Maximum Daily Load - Rainfall Discharge Ratio on the Specific Design Flow)

  • 박준대;박주현;류덕희;정동일
    • 한국물환경학회지
    • /
    • 제24권4호
    • /
    • pp.452-457
    • /
    • 2008
  • Nonpoint source (NPS) pollution is caused by rainfall moving over and through the ground. As the runoff moves, it picks up and carries away various pollutants from NPS. The discharge pattern of NPS pollutant loads is affected by the distribution of the rainfall during the year. This study analysed relationship between the rainfall event and the stream flow rate, and estimated the rainfall discharge ratio on the specific design flow which can be used as nonpoint discharge coefficient for the estimation of NPS pollution load. It is considered that nonpoint discharge coefficient can be effectively used for the calculation of NPS pollution load at the time of water quality modelling for the management of Total maximum daily load (TMDL).

Study on failure mechanism of multi-storeyed reinforced concrete framed structures

  • Ahmed, Irfan;Sheikh, Tariq Ahmad;Gajalakshmi, P.;Revathy, J.
    • Advances in Computational Design
    • /
    • 제6권1호
    • /
    • pp.1-13
    • /
    • 2021
  • Failure of a Multi-storeyed reinforced concrete framed structure occurs when a primary vertical structural component is isolated or made fragile, due to artificial or natural hazards. Load carried by vertical component (column) is transferred to neighbouring columns in the structure, if the neighbouring column is incompetent of holding the extra load, this leads to the progressive failure of neighbouring members and finally to the failure of partial or whole structure. The collapsing system frequently seeks alternative load path in order to stay alive. One of the imperative features of collapse is that the final damage is not relative to the initial damage. In this paper, the effect on the column and beam adjacent to statically removed vertical element in terms of axial force, shear force and bending moment is investigated. Using Alternate load path method, numerical modelling of two dimensional one bay, two bay with variation in storey heights are analysed with FE model in order to obtain better understanding of failure mechanism of multi-storeyed reinforced concrete framed structure. The results indicate that the corner column is more susceptible to progressive collapse when compared to middle column, using this simplified methodology one can easily predict how the structure can be made to stay alive in case of sudden failure of any horizontal or vertical structural element before designing.

FEM-based modelling of stabilized fibrous peat by end-bearing cement deep mixing columns

  • Dehghanbanadaki, Ali;Motamedi, Shervin;Ahmad, Kamarudin
    • Geomechanics and Engineering
    • /
    • 제20권1호
    • /
    • pp.75-86
    • /
    • 2020
  • This study aims to simulate the stabilization process of fibrous peat samples using end-bearing Cement Deep Mixing (CDM) columns by three area improvement ratios of 13.1% (TS-2), 19.6% (TS-3) and 26.2% (TS-3). It also focuses on the determination of approximate stress distribution between CDM columns and untreated fibrous peat soil. First, fibrous peat samples were mechanically stabilized using CDM columns of different area improvement ratio. Further, the ultimate bearing capacity of a rectangular foundation rested on the stabilized peat was calculated in stress-controlled condition. Then, this process was simulated via a FEM-based model using Plaxis 3-D foundation and the numerical modelling results were compared with experimental findings. In the numerical modelling stage, the behaviour of fibrous peat was simulated based on hardening soil (HS) model and Mohr-Coulomb (MC) model, while embedded pile element was utilized for CDM columns. The results indicated that in case of untreated peat HS model could predict the behaviour of fibrous peat better than MC model. The comparison between experimental and numerical investigations showed that the stress distribution between soil (S) and CDM columns (C) were 81%C-19%S (TS-2), 83%C-17%S (TS-3) and 89%C-11%S (TS-4), respectively. This implies that when the area improvement ratio is increased, the share of the CDM columns from final load was increased. Finally, the calculated bearing capacity factors were compared with results on the account of empirical design methods.

Fatigue wind load spectrum construction based on integration of turbulent wind model and measured data for long-span metal roof

  • Liman Yang;Cong Ye;Xu Yang;Xueyao Yang;Jian-ge Kou
    • Wind and Structures
    • /
    • 제36권2호
    • /
    • pp.121-131
    • /
    • 2023
  • Aiming at the problem that fatigue characteristics of metal roof rely on local physical tests and lacks the cyclic load sequence matching with regional climate, this paper proposed a method of constructing the fatigue load spectrum based on integration of wind load model, measured data of long-span metal roof and climate statistical data. According to the turbulence characteristics of wind, the wind load model is established from the aspects of turbulence intensity, power spectral density and wind pressure coefficient. Considering the influence of roof configuration on wind pressure distribution, the parameters are modified through fusing the measured data with least squares method to approximate the actual wind pressure load of the roof system. Furthermore, with regards to the wind climate characteristics of building location, Weibull model is adopted to analyze the regional meteorological data to obtain the probability density distribution of wind velocity used for calculating wind load, so as to establish the cyclic wind load sequence with the attributes of regional climate and building configuration. Finally, taking a workshop's metal roof as an example, the wind load spectrum is constructed according to this method, and the fatigue simulation and residual life prediction are implemented based on the experimental data. The forecasting result is lightly higher than the design standards, consistent with general principles of its conservative safety design scale, which shows that the presented method is validated for the fatigue characteristics study and health assessment of metal roof.

모래지반에서 원형기초의 수직-모멘트 조합하중 지지력과 편심계수에 대한 수치해석 연구 (Numerical Studies on Combined VM Loading and Eccentricity Factor of Circular Footings on Sand)

  • 김동준;윤준웅;지성현;추연욱
    • 한국지반공학회논문집
    • /
    • 제30권3호
    • /
    • pp.59-72
    • /
    • 2014
  • 모래지반 표면에 위치한 강체 원형기초를 대상으로 수치해석을 통하여 수직-모멘트 조합하중 조건에서의 지지력을 구하였다. 지반은 Mohr-Coulomb 소성모델을 이용하여 모델링하였으며 관련흐름법칙을 적용하였고, 거친 기초 바닥면 조건에 대하여 검토하였다. 적은 수의 해석으로 조합하중 상관도를 산출할 수 있는 swipe 재하 방법과 통상적인 재하실험에서 적용되는 probe 재하 방법을 적용하여 비교한 결과, 두 방법은 유사한 결과를 나타내었다. 모멘트하중을 고려하기 위하여 전통적으로 사용되는 유효폭 및 유효면적 개념을 사용한 결과와 편심계수($e_{\gamma}$)를 사용한 방법들을 비교하였으며, 기존의 제안식들과 수치모델링으로 구해진 본 연구의 결과를 비교하였다. 수직-모멘트 조합하중 지지력의 내부마찰각에 따른 변화는 미미한 것으로 나타났으며, 유효폭 개념은 편심계수의 형태로 변환하여 원형기초에도 그대로 적용이 가능한 것으로 나타났다. 본 연구의 수치모델링 결과는 기존의 실험에 기반한 결과들에 비해 다소 작은 값을 주는 것으로 나타났으며, 편심 및 모멘트하중이 증가할수록 그 차이는 증가하였다. 수치모델링과 실험 결과가 차이를 나타내는 요인과 향후 연구 방향에 대하여 고찰하였다.

전기추진시스템용 OPMS 기법 연구 (Optimization Power Management System for electric propulsion system)

  • 이종학;오진석
    • 한국정보통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.923-929
    • /
    • 2019
  • 자율운항선박의 기반은 추진시스템의 안정성이 중요하며, 추진체계의 안정성을 위하여 다중 발전 체계 및 추진체계를 갖추어야한다. 기존 선박에서는 안정성을 위하여 높은 발전 용량을 산정하며, 그 결과 저부하 운전으로 인한 경제성 하락을 야기한다. 이를 해결하기 위해서는 전력체계의 최적화를 통하여 발전 체계의 경량화와 효율의 증가가 필요하다. 본 논문에서는 전기추진선박용 OPMS(Optimization Power Management System)를 구축한다. OPMS는 하이브리드형 발전시스템, 에너지저장시스템, 부하제어시스템으로 구성된다. 발전시스템은 이중연료엔진, 에너지저장시스템은 배터리, 부하제어시스템은 추진 부하, 상용 부하, 불규칙 부하, 화물 기기 관련 부하, 갑판 부하로 구성된다. 각 시스템별 기기들의 특성에 대하여 모델링하여 전력체계를 구축하였다. 실험을 위하여 선박 운용에 따른 시나리오를 작성하고 안정성 및 경제성을 기존의 전기추진선박과 비교하였다. 실험의 결과 발전기의 비교적 적은 시간 투입으로 같은 전력량을 공급함으로써 선박의 LNG 1.3%, Main Fuel 0.3%, Pilot Fuel 35.1%의 연료소모량 감소를 통하여 경제성 및 안정성을 확인하였다.

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Numerical investigation of glass windows under near-field blast

  • Chiara Bedon;Damijan Markovic;Vasilis Karlos;Martin Larcher
    • Coupled systems mechanics
    • /
    • 제12권2호
    • /
    • pp.167-181
    • /
    • 2023
  • The determination of the blast protection level and the corresponding minimum load-bearing capacity for a laminated glass (LG) window is of crucial importance for safety and security design purposes. In this paper, the focus is given to the window response under near-field blast loading, i.e., where relatively small explosives would be activated close to the target, representative of attack scenarios using small commercial drones. In general, the assessment of the load-bearing capacity of a window is based on complex and expensive experiments, which can be conducted for a small number of configurations. On the other hand, nowadays, validated numerical simulations tools based on the Finite Element Method (FEM) are available to partially substitute the physical tests for the assessment of the performance of various LG systems, especially for the far-field blast loading. However, very little literature is available on the LG window performance under near-field blast loads, which differs from far-field situations in two points: i) the duration of the load is very short, since the blast wavelength tends to increase with the distance and ii) the load distribution is not uniform over the window surface, as opposed to the almost plane wave configuration for far-field configurations. Therefore, the current study focuses on the performance assessment and structural behaviour of LG windows under near-field blasts. Typical behavioural trends are investigated, by taking into account possible relevant damage mechanisms in the LG window components, while size effects for target LG windows are also addressed under a multitude of blast loading configurations.