• Title/Summary/Keyword: load level

Search Result 2,523, Processing Time 0.035 seconds

Analysis of the Load Transfer Capacity and Study of Conductor Sizes for Contingency Levels in Distribution Systems (상정사고별 배전측 부하분담 능력 분석과 도체 규격 검토)

  • 조남훈;전영재;한용희;한병성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.363-370
    • /
    • 2003
  • This paper presents the analysis of the load transfer capacity and study of conductor size for variable contingencies in distribution systems. The operation capacity of feeders was changed to improve operation efficiency in KEPCO, considerations for contingencies are still based on the previous capacity. In order to cope with the changes such as operation capacity, it is necessary to study whether the present "contingency support criteria" is reasonable or not, also to confirm the whether the present criteria should be improved or not. We analyze the load transfer capacity and conductor size on a distribution system for contingency levels such as the substation-level, bank-level, feeder-level, and zone-level.one-level.

Further study on level ice resistance and channel resistance for an icebreaking vessel

  • Hu, Jian;Zhou, Li
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.2
    • /
    • pp.169-176
    • /
    • 2016
  • In this paper, further research is carried out to investigate the resistance encountered by an icebreaking vessel travelling through level ice and channel ice at low speed range. The present paper focuses on experimental and calculated ice resistances by some empirical formulas in both level ice and channel ice. In order to achieve the research, extra model tests have been done in an ice basin. Based on the measurements from model test, it is found that there exists a relationship between ice resistance, minimum ice load, maximum ice load and the standard deviation of ice load for head on operation in level ice. In addition, both level ice resistance and channel ice resistance are calculated and compared with model test results.

A New Packet-level Load-balancing Scheme for Fat-Trees (Fat-Tree에서의 새로운 패킷 단위 부하분산 방식)

  • Lim, Chansook
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.53-58
    • /
    • 2013
  • A Fat-Tree topology has multiple paths between any pair of hosts. The delay for the multiple paths with an equal number of hops depends mainly on the queuing delay. However, most of the existing load-balancing schemes do not sufficiently exploit the characteristics of Fat-Tree. In most schemes load-balancing is performed at a flow level. Packet-level load-balancing schemes usually require the availability of special transport layer protocols to address packet reordering. In this paper, we propose a new packet-level load-balancing scheme which can enhance network utilization while minimizing packet reordering in Fat-Trees. Simulation results show that the proposed scheme provides as high TCP throughput as a randomized flow-level Valiant load balancing scheme for a best case.

The Research of the Heavy-Weight Impact Sound Characteristic by Live load Installation on the Source Room (공동주택 음원실 바닥의 하중 설치에 따른 중량충격음 특성에 관한 연구)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Sohn, Jang-Yeul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.6
    • /
    • pp.235-242
    • /
    • 2007
  • The test and evaluation of floor impact sound is mainly conducted before move in the residence. Floor impact sound generating is actually the conditions in which a heavy load like a curtain and furniture is installed, the situation before and after move in the residence is different. In this study, we investigate the floor impact sound variations according to the live load installation like furniture in the source room. The vibration acceleration level and floor impact sound level variation were measured before and after live load ($200kg/m^2$) installation in the floor impact sound test building and the field. The difference was not large although the vibration acceleration level and the floor impact sound level were reduced through measurement result of load installation. Resonance frequency was not changed by load installation.

Real-Time Bus Reconfiguration Strategy for the Fault Restoration of Main Transformer Based on Pattern Recognition Method (자동화된 변전소의 주변압기 사고복구를 위한 패턴인식기법에 기반한 실시간 모선재구성 전략 개발)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.11
    • /
    • pp.596-603
    • /
    • 2004
  • This paper proposes an expert system based on the pattern recognition method which can enhance the accuracy and effectiveness of real-time bus reconfiguration strategy for the transfer of faulted load when a main transformer fault occurs in the automated substation. The minimum distance classification method is adopted as the pattern recognition method of expert system. The training pattern set is designed MTr by MTr to minimize the searching time for target load pattern which is similar to the real-time load pattern. But the control pattern set, which is required to determine the corresponding bus reconfiguration strategy to these trained load pattern set is designed as one table by considering the efficiency of knowledge base design because its size is small. The training load pattern generator based on load level and the training load pattern generator based on load profile are designed, which are can reduce the size of each training pattern set from max L/sup (m+f)/ to the size of effective level. Here, L is the number of load level, m and f are the number of main transformers and the number of feeders. The one reduces the number of trained load pattern by setting the sawmiller patterns to a same pattern, the other reduces by considering only load pattern while the given period. And control pattern generator based on exhaustive search method with breadth-limit is designed, which generates the corresponding bus reconfiguration strategy to these trained load pattern set. The inference engine of the expert system and the substation database and knowledge base is implemented in MFC function of Visual C++ Finally, the performance and effectiveness of the proposed expert system is verified by comparing the best-first search solution and pattern recognition solution based on diversity event simulations for typical distribution substation.

Dynamic Snapping and Frequency Characteristics of 3-Free-Nodes Spatial Truss Under the Periodic Loads (주기 하중을 받는 3-자유절점 공간 트러스의 동적 불안정 현상과 주파수 특성)

  • Shon, Sudeok;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.4
    • /
    • pp.149-158
    • /
    • 2020
  • The governing equation for a dome-type shallow spatial truss subjected to a transverse load is expressed in the form of the Duffing equation, and it can be derived by considering geometrical non-linearity. When this model under constant load exceeds the critical level, unstable behavior is appeared. This phenomenon changes sensitively as the number of free-nodes increases or depends on the imperfection of the system. When the load is a periodic function, more complex behavior and low critical levels can be expected. Thus, the dynamic unstable behavior and the change in the critical point of the 3-free-nodes space truss system were analyzed in this work. The 4-th order Runge-Kutta method was used in the system analysis, while the change in the frequency domain was analyzed through FFT. The sinusoidal wave and the beating wave were utilized as the periodic load function. This unstable situation was observed by the case when all nodes had same load vector as well as by the case that the load vector had slight difference. The results showed the critical buckling level of the periodic load was lower than that of the constant load. The value is greatly influenced by the period of the load, while a lower critical point was observed when it was closer to the natural frequency in the case of a linear system. The beating wave, which is attributed to the interference of the two frequencies, exhibits slightly more behavior than the sinusoidal wave. And the changing of critical level could be observed even with slight changes in the load vector.

Axial Load Transfer Behavior of a Large Diameter Drilled Shaft by Osterberg Type Load Test (오스트버그식 재하시험을 이용한 대구경 현장타설말뚝의 축하중전이거동)

  • 임태경;정창규;정성민;최용규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.447-454
    • /
    • 2003
  • In this test, two separated oil jacks were placed at bottom of drilled shaft(D = 1,500mm, L = 33m), and maximum upward and downward load of 1,250 tonf was applied. Also, the deformable rod sensors were placed on each level, and axial strains at each level were measured. Because the side skin friction and the end bearing could be measured separately in the Osterberg type pile load test, this test might be more economical and more applicable than a conventional static pile load test. Thus, if this Osterberg type pile load test could be established during design stage, construction cost might be reduced and its application for large diameter pile could be enhance greatly.

  • PDF

Effect of groundwater fluctuation on load carrying performance of shallow foundation

  • Park, Donggyu;Kim, Incheol;Kim, Garam;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.575-584
    • /
    • 2019
  • The groundwater level (GWL) is an important subsoil condition for the design of foundation. GWL tends to fluctuate often with seasonal variation, which may cause unexpected, additional settlements with some reductions in the safety margin of foundation. In this study, the effects of fluctuating GWL on the load carrying and settlement behavior of footing were investigated and quantified. A series of model load tests were conducted for various GWL and soil conditions using a hydraulically-controlled chamber system. Changes in load level and rising and falling GWL fluctuation cycle were considered in the tests. Settlements during GWL rise were greater than those during GWL fall. The depth of the GWL influence zone ($\underline{d}_{w,inf}$) varied in the range of 0.3 to 1.5 times footing width and became shallower as GWL continued to fluctuate. Design equations for estimating GWL-induced settlements for footings were proposed. The GWL fluctuation cycle, load level and soil density were considered in the proposed method. Changes in settlement and factor of safety with GWL fluctuation were discussed.

An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing (다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석)

  • Park, Hee Mun;Kim, Yeon Tae;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.

An Experimental Study on Flexural Repair of Reinforced Concrete Beams with the CFRP Sheet (탄소섬유시트를 사용한 철근콘크리트 구조물의 휨 보강에 관한 실험적 연구)

  • 박정원;박상렬;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.781-786
    • /
    • 2000
  • This paper presents the behavior and strenghening effect of reinforced concrete rectangular beams strengthened sing CFRP sheets with different strengthening level. In general, normally strengthened beams are failed by interfacial shear failure (delamination) within concrete, instead of by tensile failure of the CFRP sheets. The delamination occurred suddenly and the concrete cover cracked vertically by flexure was spalled off due to the release energy. The ultimate load considerably increased with an increase of strengthening level, while the ultimate deflection significantly decreased. The tensile force of CFRP sheets and average shear stress of concrete at delamination failure were curvilinearly proportional to the strengthening level. Therefore, the increment of ultimate load obtained by strengthening was curvilinearly proportional to th strengthening level.

  • PDF