• Title/Summary/Keyword: load influence

Search Result 2,042, Processing Time 0.025 seconds

An Analysis of Relationship Between Personal Factors of Radiological Technologists and Job Stressors (방사선사의 개인적 요인이 직무스트레스원에 영향을 주는 관련성 분석)

  • Jung, Hong-Ryang;Kim, Jeong-Koo;Lim, Cheong-Hwan;Kim, Myeong-Soo;Kwon, Dae-Cheol;Lee, Man-Koo
    • Journal of radiological science and technology
    • /
    • v.28 no.1
    • /
    • pp.45-53
    • /
    • 2005
  • This study is aimed at analyzing the relationship between personal factors of radiological technologists and their job stressors. For this aim, a survey was conducted by means of 890 questionnaires from the middle of July to the end of August 2003 to the subjects of radiological technologists who are working for 44 general hospitals in 16 cities and provinces across the country. The results of the survey could be summed up as follows: 1. The biggest stressor that affects a radiological technologist personally under the working situation turned out to be position, job satisfaction and physical symptom(p<0.001), while job satisfaction and physical symptom also played an important role in personal relationship(p<0.001). 2. In terms of job conflicts, colleagues, immediate seniors, job satisfaction and physical symptoms appeared to exercise great impact(p<0.001), As for job autonomy, age, position and job satisfaction were known to be heavily influential(p<0.001). 3. With regard to job load, job satisfaction and behavioral symptom turned out to have great influence while, in job stability, position and job satisfaction seemed to be immensely influential(p<0.001). The present study has a limit in that it covers only radiological technologists who are working at the 3rd reference hospitals but excludes those who are working at the first and second reference hospitals. The findings, however, are surely believed to be able to serve as basic data to improve the medical service quality as they will help reduce the stressors of and enhance mental and physical health for radiological technologists who play important roles as teammates with expertise in the medical field. These outcomes could also be referred to in future studies in this area.

  • PDF

Assessment of future stream flow and water quality of Man-gyeong river watershed based on extreme climate change scenarios and inter-basin water transfer change using SWAT (SWAT을 이용한 극한 기후변화 시나리오와 유역간 물이동 변화를 고려한 만경강 유역의 미래 수문 및 수질 평가)

  • Woo, So-Young;Lee, Ji-Wan;Kim, Yong-Won;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.8
    • /
    • pp.605-616
    • /
    • 2020
  • The purpose of this study is to assess the future hydrological and water quality change of Man-gyeong river basin (1,602 ㎢) based on future extreme climate change scenarios and reduction of inter-basin water transfer amount using SWAT (Soil and Water Assessment Tool). The SWAT was calibrated (2012~2014) and validated (2016~2018) at 2 water level observation stations (DC, JJ) and 2 water quality observation stations (SR, GJ) considering inter-basin water transfer amount, stream water withdrawal, and point source data. For the streamflow, the coefficient of determination (R2) was 0.70 and the average Nash-Sutcliffe efficiency (NSE) was 0.51 respectively. For the water quality of SS, T-N, and T-P, the R2 was 0.72, 0.80 and 0.72 respectively. The future average streamflow under climate change scenarios increased up to 459 mm/yr, and average SS, T-N and T-P yields also increased up to 19,548 ton/yr, 68,748 kg/yr, and 13,728 kg/yr respectively. When the amount of inter basin water transfer decreased, the streamflow especially decreased in spring and winter periods, and the future water quality yields increased under the influence of precipitation. In order to solve the deterioration of water quality due to decrease in the flow rate and an increase in the load, the amount of inter basin water transfer should be maintained to a certain level.

Influence of Welding Parameters on Macrostructure and Mechanical Properties of Friction-Stir-Spot-Welded 5454-O Aluminum Alloy Sheets (마찰교반점접합한 5454-O 알루미늄합금 판재의 접합부 거시조직 및 기계적 특성에 미치는 접합인자의 영향)

  • Choi, Won-Ho;Kwon, Yong-Jai;Yoon, Sung-Ook;Kang, Myoung-Soo;Lim, Chang-Yong;Seo, Jong-Dock;Hong, Sung-Tae;Park, Dong-Hwan;Lee, Kwang-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.6
    • /
    • pp.56-64
    • /
    • 2011
  • Friction stir spot welding between 5454 aluminum alloy sheets with the different thicknesses of 1.4 and 1.0 mm was performed. In the welding process, the tool for welding was rotated ranging from 500 to 2500, and plunged to the depth of 1.8 mm under a constant tool plunge speed of 100 mm/min. And then, the rotating tool was maintained at the plunge depth during the dwell time ranging from 0 to 7 sec. The pull-out speed of the rotating tool was 100 mm/min. The increase of tool rotation speed resulted in the change of the macrostructure of friction-stir-spot-welded zone, especially the geometry of welding interface. The results of the tensile shear test showed that the total displacement and toughness of the welds were increased with the increase of the tool rotation speed, although the maximum tensile shear load was decreased. However, the change in the dwell time at the plunge depth of the tool did not produce the remarkable variation in the macrostructure and mechanical properties of the welds. In all cases, the average hardness in friction-stir-spot-welded zone was higher than that of the base metal zone. By the friction stir spot welding technique, the welds with the excellent mechanical properties than the mechanically-clinched joints could be obtained.

Analysis of the Contact Pressure Distribution and Kinetics of Knee Implant Using the Simulator (Simulator를 이용한 인공무릎관절 접촉면의 압력분포 및 운동성 분석)

  • 이문규;김종민;김동민;최귀원
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.363-367
    • /
    • 2003
  • Contact area and pressure are important factors which directly influence a life of knee implants. Since implant's mechanical functions should be experimentally evaluated for clinical use, many studies using a knee simulator and a pressure sensor system have been conducted. However it has not been reported that the contact pressure's distribution of a knee implant motion was estimated in real-time during a gate cycle. Therefore. the objective of this study was to analyze the contact pressure distribution for the motion of a joint using the knee simulator and I-scan sensor system. For this purpose, we developed a force-controlled dynamic knee simulator to evaluate the mechanical performance of artificial knee joint. This simulator includes a function of a soft tissue and has a 4-degree-of-freedom to represent an axial compressive load and a flexion angle. As axial compressive force and a flexion angle of the femoral component can be controlled by PC program. The pressure is also measured from I-scan system and simulator to visualize the pressure distribution on the joint contact surfaces under loading condition during walking cycle. The compressive loading curve was the major cause for the contact pressure distribution and its center move in a cycle as to a flexion angie. In conclusion, this system can be used to evaluate to the geometric interaction of femoral and tibial design due to a measured mechanical function such as a contact pressure, contact area and a motion of a loading center.

Influence of Time of Hand-thining on Bitter Pit Incidence and Fruit Quality in 'Gamhong'/M.9 Apple Trees (인력 적과 시기가 '감홍'/M.9 사과나무의 고두증상 발생과 과실품질에 미치는 영향)

  • Kweon, Hun-Joong;Sagong, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.342-350
    • /
    • 2021
  • This study was conducted to investigate the effect of time of hand-thinning on vegetative growth, bitter pit incidence, fruit quality, and return bloom in 'Gamhong'/M.9 apple trees. The time of hand-thinning were 3, 5, 7 and 9 weeks after full bloom, and the primary thinning (leaving only the king fruit on cluster) and secondary thinning (adjusting crop load) were conducted at the same time. The time of hand-thinning was correlated to the vegetative growth, average fruit wight, yield, soluble solids content, bitter pit incidence, and return bloom, negatively, and to the yield of middle grade fruits (fruit weight was 250-299g and none pit on fruit surface) per tree, calcium contents of leaves, and fruit red color, positively. There was no significant effect of time of hand-thinning on fruit firmness, titratable acidity, and total incomes per tree. In conclusion, if the time of hand-thinning of 'Gamhong'/M.9 apple tree was completed at 9 weeks after full bloom, it could produce about 300g of high-quality fruit without bitter pit.

An Experimental Study on the Reduction Effects of Shading Devices on Sky Radiant Cooling in Winter (차양장치의 겨울철 천공복사 냉각 저감 효과에 관한 실험적 연구)

  • Kim, Jin-Hee;Kim, Young-Tag;Lee, Soo-Yeol;Choi, Won-Ki
    • Land and Housing Review
    • /
    • v.12 no.1
    • /
    • pp.129-137
    • /
    • 2021
  • External shading devices are well known solar control devices that can help reduce the cooling load of commercial buildings. For this study, experiments were conducted to examine the feasibility of shading devices in reducing both the cooling and heating loads. The influence of sky radiant cooling during winter was verified for the external shading device, internal roller blind, and window. Results can be summarized as follows. The temperature difference between the inner and outer surfaces of the window with the external shading device was 11.8℃ compared to 14.6℃ for one without the external shading device. This 2.8℃ difference was due to heat exchange by sky radiation when the surface temperature of the shading device was lower than the ambient outdoor air temperature. The roller blind resulted in a lower temperature of 0.8℃ compared to the average temperature of the window's air cavity. This was due to heat exchange by sky radiation of the roller blind surfaces. Without shading devices, the outside surface temperature of the window is about 3℃ higher. The study also found that when external shading devices were installed on both the southwest and southeast sides, the outside surface temperature of the windows were lower on the southwest side than the southeast side.

Crashworthiness Analysis and Shape Design Optimization of Thin-walled Corrugated Tubes under Axial Impact (축 방향 충격을 받는 박판 파형관의 충돌안전도 해석 및 형상 최적설계)

  • Ahn, Seung Ho;Jung, Hyun Seung;Kim, Jin Sung;Son, Seung Wan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.128-135
    • /
    • 2021
  • Thin-walled tubes have been widely used as energy absorbing devices because they are light and have high energy-absorption efficiency. However, the downside is that conventional thin-walled tubes usually exhibit an excessive initial peak crushing force (IPCF) and a large fluctuation in the load-displacement curve, and thus lack stability as energy absorbing devices. Corrugated tubes were introduced to reduce IPCF and to increase the stability of collision energy-absorbing devices. Since the performance of corrugated tubes is highly influence by geometry, design optimization methods can be utilized to optimize the performance of corrugated tubes. In this paper, we utilize shape design optimization based on an adaptive surrogate model for crashworthiness analysis. The amplitude and wavelength of the corrugation, as well as curvature changes in the features, are the design variables. A morphing methodology is adopted to perform shape design parameterization. Through numerical examples, we compare optimal design results based on the adaptive surrogate model, with optimal results based on conventional surrogate models, and we show that direct optimal design methods produce more efficient results.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Seismic Response Analysis of a Two-Mass Rack System Considering Frictional Behavior (마찰거동을 고려한 이중질량시스템의 지진응답해석)

  • Park, Kwan-Soon;Ok, Seung-Yong;Lee, Jeeho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.347-352
    • /
    • 2018
  • This study proposes seismic response analysis technique of a two-mass rack system which sustains heavy loads with frictional behavioral characteristics. In order to deal with the nonlinear frictional characteristics of the mass on the rack system, the equations of motion of the system has been derived and the appropriate numerical simulation technique has been developed. In order to examine the seismic performance of the proposed system, we consider two parameters that are expected to have great influence on the seismic performance of the system. One is the ratio of the two masses of the load and the rack structure, and the other is the friction coefficient between rack and loaded mass. A number of numerical simulations of the seismic response of structures with various natural frequencies for both parameters have been performed in order to investigate the seismic safety of the rack structures. From the simulated results. it is observed that the maximum displacement of the rack system tends to decrease drastically as the natural frequency of the structure increases regardless of the two parameters of mass ratio and friction coefficient. The proposed study provides important reference data to guarantee the seismic safety of the rack system by considering nonlinear frictional behavior of the loaded mass.

A vision-based system for long-distance remote monitoring of dynamic displacement: experimental verification on a supertall structure

  • Ni, Yi-Qing;Wang, You-Wu;Liao, Wei-Yang;Chen, Wei-Huan
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.769-781
    • /
    • 2019
  • Dynamic displacement response of civil structures is an important index for in-construction and in-service structural condition assessment. However, accurately measuring the displacement of large-scale civil structures such as high-rise buildings still remains as a challenging task. In order to cope with this problem, a vision-based system with the use of industrial digital camera and image processing has been developed for long-distance, remote, and real-time monitoring of dynamic displacement of supertall structures. Instead of acquiring image signals, the proposed system traces only the coordinates of the target points, therefore enabling real-time monitoring and display of displacement responses in a relatively high sampling rate. This study addresses the in-situ experimental verification of the developed vision-based system on the Canton Tower of 600 m high. To facilitate the verification, a GPS system is used to calibrate/verify the structural displacement responses measured by the vision-based system. Meanwhile, an accelerometer deployed in the vicinity of the target point also provides frequency-domain information for comparison. Special attention has been given on understanding the influence of the surrounding light on the monitoring results. For this purpose, the experimental tests are conducted in daytime and nighttime through placing the vision-based system outside the tower (in a brilliant environment) and inside the tower (in a dark environment), respectively. The results indicate that the displacement response time histories monitored by the vision-based system not only match well with those acquired by the GPS receiver, but also have higher fidelity and are less noise-corrupted. In addition, the low-order modal frequencies of the building identified with use of the data obtained from the vision-based system are all in good agreement with those obtained from the accelerometer, the GPS receiver and an elaborate finite element model. Especially, the vision-based system placed at the bottom of the enclosed elevator shaft offers better monitoring data compared with the system placed outside the tower. Based on a wavelet filtering technique, the displacement response time histories obtained by the vision-based system are easily decomposed into two parts: a quasi-static ingredient primarily resulting from temperature variation and a dynamic component mainly caused by fluctuating wind load.