• Title/Summary/Keyword: load effects

Search Result 3,976, Processing Time 0.044 seconds

Effects of Combination of the Load and the Apparent Area of Contact on Sliding Wear behavior of Mild Steel in a Pin-on-disc Type Apparatus (Pin-on-Disc식 미끄럼마모시험 시 마모 거동에 미치는 접촉면적 및 하중 조합의 영향)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.29 no.2
    • /
    • pp.85-90
    • /
    • 2013
  • The effects of contact pressure on the sliding wear behavior of mild steel in a pin-on-disc type apparatus were investigated. Sliding wear tests were conducted with various combinations of the load and apparent area of contact. The wear behavior of mild steel as a function of sliding speed was independent of contact pressure. However, the wear rate at different sliding speeds was influenced by the load regardless of the apparent area of contact. This was attributed to the fact that there may be no difference in the real area of contact for any combination of the load and apparent area of contact.

The Characteristic Analysis of the Load-sensitive Hydraulic Control System for Closed Center Type of a Wheel Loader (휠 로더용 폐회로형 부하 감응 유압 제어 시스템의 특성 해석)

  • Lee, Seung-Hyun;Song, Chang-Seop;Chung, Chun-Kuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.934-942
    • /
    • 2007
  • In this study, the characteristics of the load-sensitive hydraulic control system for closed center type of a wheel loader were analyzed using developed analysis program based on Amesim tool. From the parametric analysis, the effects of each factor were revealed. Through the simulation with varying parameters, the system parameter effects on the controllable region and the pump pressure and load pressure variations were studied. The results were compared with the experimental ones. The results and discussions of the present paper could aid in the design of a load-sensitive hydraulic control system for closed center type.

Studies on Damping Ratio of Nailed Joint Connecting Wall to Floor in Light Frame House (경골목조주택의 벽체-바닥체 못결합부의 감쇠비에 관한 연구)

  • Kim, Kwang-Mo;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.65-71
    • /
    • 1996
  • In the design of wood structures, the consideration of the dynamic load effect has been increased. Generally, damping ratio is presented as the method of considering dynamic load effect. So, the relationship between joint type and damping ratio was investigated. It has been known that the joint extremely damp the dynamic load in wood structures. Static test was performed to determine the effects of nail size and friction area on joint strength and stiffness. Joint strength and stiffness were increased with nail size. However, the static properties of joint was not affected by friction area. Cyclic test was performed to determine the effects of nail size, friction area and load magnitude on damping ratio, Damping ratio was affected by all factors. Increasing the width of the bottom plate was suggested as the most adequate method to increase the damping ratio without the reduction of the static properties of the structures.

  • PDF

Moving-load dynamic analysis of AFG beams under thermal effect

  • Akbas, S.D.
    • Steel and Composite Structures
    • /
    • v.42 no.5
    • /
    • pp.649-655
    • /
    • 2022
  • In presented paper, moving load problem of simply supported axially functionally graded (AFG) beam is investigated under temperature rising based on the first shear beam theory. The material properties of beam vary along the axial direction. Material properties of the beam are considered as temperature-dependent. The governing equations of problem are derived by using the Lagrange procedure. In the solution of the problem the Ritz method is used and algebraic polynomials are used with the trivial functions for the Ritz method. In the solution of the moving load problem, the Newmark average acceleration method is used in the time history. In the numerical examples, the effects of material graduation, temperature rising and velocity of moving load on the dynamic responses ofAFG beam are presented and discussed.

Effects of Lift Resistance on Dynamic Load Acting on a Circular Wheel

  • Kishimoto, Tadashi;Taniguchi, Tetsuji;Sakai, Jun;Choe, Jung-Seob;Ohtomo, Koh-Ichi
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1993.10a
    • /
    • pp.1166-1175
    • /
    • 1993
  • The objective of this study is to measure contra-retractive adhesion and lift resistance acting on the rim section of a circular wheel for analyses of their effects on the dynamic load. A circular iron wheel was used for experiments. A part of the wheel rim was cut off, and transducers which can measure normal and tangential forces were installed in this section. Experiments were conducted on a laboratory soil bin which was filled with clayey soil under wet and dry conditions. The mechanism of generating contra -retractive adhesion on a circular wheel were analyzed by the experiments and motion analyses of the wheel. Effects of lift resistance on dynamic load were analyzed by measured forces under wet soil conditions in comparison in comparison with those under dry conditions. The showed that a part of the lift resistance were transferred to the dynamic load. These results may become basic data and ideas for analyses of tractor dynamic under wet soil conditions.

  • PDF

Characteristics of Fatigue Load in a Wind Turbine by the Wake (후류에 의한 풍력터빈의 피로하중 특성)

  • Kim, Chung-Ok;Eum, Hark-Jin;Nam, Hyun-Woo;Kim, Gui-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.6
    • /
    • pp.57-65
    • /
    • 2011
  • The wake generated by a wind turbine has an effect on performance of a downstream wind turbine as well as mechanical loads. This paper investigated characteristics of fatigue load at the blade root due to the wake effects and quantitatively analyzed its effects at operating condition of a 5MW tripod offshore wind turbine using Bladed 4.1 software. The wake effects was studied the way the wake's center position move from the rotor center to the blade tip to the far-away position where the wake doesn't affect the wind turbine. When wake's center was located on the blade tip or the rotor center, damage equivalent fatigue load was higher than other positions. It was up to 10~14% compared to those of non-wake case. Results of this study would be helpful to design wind turbines and wind farms to have lifetimes more than 20 years of the wind turbine.

Comparison of Pollutant Control in Combined Sewer Overflows and Separated Sewer Overflows using the Separation Wall (우오수분리벽을 이용한 합류식 하수관거와 분류식 우수관거의 월류수 제어효과 비교)

  • Lim, Bong-Su;Kim, Do-Young;Lee, Kuang-Chun
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.4
    • /
    • pp.458-466
    • /
    • 2007
  • This study is to evaluate control effects of separation wall by surveying water quality and sewer overflows during dry and wet periods in combined sewer and separated sewer systems. Ravine water from the combined Seokgyo outfall with the separation wall was separated about four times larger than sewage flow during dry periods. The water quality of the combined Seokgyo outfall with separation wall during dry periods is flow weighed average BOD 61 mg/L, the combined Cheonseokgyo outfall without the separation wall is average BOD 71 mg/L, and the separated Pyeongsong center outfall is average BOD 41 mg/L. The BOD concentration in separated outfall form about 57% of the combined outfall, and this means the separated outfall (i.e. storm sewer) is polluted by inflow of sewage. The overflow load of the separated outfall is ten times higher than the combined outfall and its overflow load per rainfall is three times than combined outfall during the wet periods. Therefore, the control plan of overflow load is required in storm sewer. The control effects of the overflow load increased 79% by setting the separation wall in the combined sewer, and showed 27% increase without the separation wall in separated sewer, but forecasted over 80% increase of effects if the separation wall was set.

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.6
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

A Study on the Moment Gradient factor of Mono-symmetric I Beam (일축 대칭 I 형 보의 모멘트 구배계수에 대한 연구)

  • 김윤종;임남형;박남회;강영종
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.439-446
    • /
    • 2000
  • In this study, 7 dof (Including warping) beam element was developed to estimate the effects of wagner effects and load height effects on the lateral buckling strength of mono-symmetric I beam. Finite element buckling analysis of mono-symmetric I-shaped girders subjected to transverse loading applied at different heights on the cross-section were conducted. Linear moment gradient were considered, too. In these cases, girders are subjected to both single-curvature and Reverse-curvature bending. An applicability of current LRFD C$\sub$b/ on the mono-symmetric I beam was studied from the finite element results. The problems of current LRFD C$\sub$b/ occurring from load height effects and reverse curvature bending in unbraced length when applied on the mono-symmetric I beam were studied. Solutions to these problems are also presented.

  • PDF

Dynamic response of FG porous nanobeams subjected thermal and magnetic fields under moving load

  • Esen, Ismail;Alazwari, Mashhour A.;Eltaher, Mohamed A;Abdelrahman, Alaa A.
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.805-826
    • /
    • 2022
  • The free and live load-forced vibration behaviour of porous functionally graded (PFG) higher order nanobeams in the thermal and magnetic fields is investigated comprehensively through this work in the framework of nonlocal strain gradient theory (NLSGT). The porosity effects on the dynamic behaviour of FG nanobeams is investigated using four different porosity distribution models. These models are exploited; uniform, symmetrical, condensed upward, and condensed downward distributions. The material characteristics gradation in the thickness direction is estimated using the power-law. The magnetic field effect is incorporated using Maxwell's equations. The third order shear deformation beam theory is adopted to incorporate the shear deformation effect. The Hamilton principle is adopted to derive the coupled thermomagnetic dynamic equations of motion of the whole system and the associated boundary conditions. Navier method is used to derive the analytical solution of the governing equations. The developed methodology is verified and compared with the available results in the literature and good agreement is observed. Parametric studies are conducted to show effects of porosity parameter; porosity distribution, temperature rise, magnetic field intensity, material gradation index, non-classical parameters, and the applied moving load velocity on the vibration behavior of nanobeams. It has been showed that all the analyzed conditions have significant effects on the dynamic behavior of the nanobeams. Additionally, it has been observed that the negative effects of moving load, porosity and thermal load on the nanobeam dynamics can be reduced by the effect of the force induced from the directed magnetic field or can be kept within certain desired design limits by controlling the intensity of the magnetic field.