• Title/Summary/Keyword: load distribution strategy

Search Result 84, Processing Time 0.021 seconds

NONLINEAR CONTROL FOR CORE POWER OF PRESSURIZED WATER NUCLEAR REACTORS USING CONSTANT AXIAL OFFSET STRATEGY

  • ANSARIFAR, GHOLAM REZA;SAADATZI, SAEED
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.838-848
    • /
    • 2015
  • One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC), which is a robust nonlinear controller, is presented.SMCis ameansto control pressurized water nuclear reactor (PWR) power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO) strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

Structural analysis and optimization of large cooling tower subjected to wind loads based on the iteration of pressure

  • Li, Gang;Cao, Wen-Bin
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.735-753
    • /
    • 2013
  • The wind load is always the dominant load of cooling tower due to its large size, complex geometry and thin-wall structure. At present, when computing the wind-induced response of the large-scale cooling tower, the wind pressure distribution is obtained based on code regulations, wind tunnel test or computational fluid dynamic (CFD) analysis, and then is imposed on the tower structure. However, such method fails to consider the change of the wind load with the deformation of cooling tower, which may result in error of the wind load. In this paper, the analysis of the large cooling tower based on the iterative method for wind pressure is studied, in which the advantages of CFD and finite element method (FEM) are combined in order to improve the accuracy. The comparative study of the results obtained from the code regulations and iterative method is conducted. The results show that with the increase of the mean wind speed, the difference between the methods becomes bigger. On the other hand, based on the design of experiment (DOE), an approximate model is built for the optimal design of the large-scale cooling tower by a two-level optimization strategy, which makes use of code-based design method and the proposed iterative method. The results of the numerical example demonstrate the feasibility and efficiency of the proposed method.

Development of Dispatching Strategy for Inbound and Outbound Trucks in Cross Docking System (크로스도킹 시스템에서의 입고 및 출하 트럭의 배차 전략 개발)

  • Yu, Wooyeon;Egbelu, Pius J.
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.2
    • /
    • pp.167-184
    • /
    • 2013
  • A cross docking operation involves multiple inbound trucks that deliver items from suppliers to a distribution center and multiple outbound trucks that ship items from the distribution center to customers. Based on customer demands, an inbound truck may have its items transferred to multiple outbound trucks. Similarly, an outbound truck can receive its consignments from multiple inbound trucks. The objective of this study is to find the best truck spotting sequence for both inbound and outbound trucks in order to minimize total operation time of the cross docking system under the condition that multiple visits to the dock by a truck to unload or load its consignments is allowed. The allocations of the items from inbound trucks to outbound trucks are determined simultaneously with the spotting sequences of both the inbound and outbound trucks.

Coordinated Voltage and Reactive Power Control Strategy with Distributed Generator for Improving the Operational Efficiency

  • Jeong, Ki-Seok;Lee, Hyun-Chul;Baek, Young-Sik;Park, Ji-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1261-1268
    • /
    • 2013
  • This study proposes a voltage and reactive coordinative control strategy with distributed generator (DG) in a distribution power system. The aim is to determine the optimum dispatch schedules for an on-load tap changer (OLTC), distributed generator settings and all shunt capacitor switching on the load and DG generation profile in a day. The proposed method minimizes the real power losses and improves the voltage profile using squared deviations of bus voltages. The results indicate that the proposed method reduces the real losses and voltage fluctuations and improve receiving power factor. This paper proposes coordinated voltage and reactive power control methods that adjust optimal control values of capacitor banks, OLTC, and the AVR of DGs by using a voltage sensitivity factor (VSF) and dynamic programming (DP) with branch-and-bound (B&B) method. To avoid the computational burden, we try to limit the possible states to 24 stages by using a flexible searching space at each stage. Finally, we will show the effectiveness of the proposed method by using operational cost of real power losses and voltage deviation factor as evaluation index for a whole day in a power system with distributed generators.

Control Strategy for Selective Compensation of Power Quality Problems through Three-Phase Four-Wire UPQC

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.576-582
    • /
    • 2011
  • This paper presents a novel control strategy for selective compensation of power quality (PQ) problems, depending upon the limited rating of voltage source inverters (VSIs), through a unified power quality conditioner (UPQC) in a three-phase four-wire distribution system. The UPQC is realized by the integration of series and shunt active power filters (APFs) sharing a common dc bus capacitor. The shunt APF is realized using a three-phase, four-leg voltage source inverter (VSI), while a three-leg VSI is employed for the series APF of the three-phase four-wire UPQC. The proposed control scheme for the shunt APF, decomposes the load current into harmonic components generated by consumer and distorted utility. In addition to this, the positive and negative sequence fundamental frequency active components, the reactive components and harmonic components of load currents are decomposed in synchronous reference frame (SRF). The control scheme of the shunt APF performs with priority based schemes, which respects the limited rating of the VSI. For voltage harmonic mitigation, a control scheme based on SRF theory is employed for the series APF of the UPQC. The performance of the proposed control scheme of the UPQC is validated through simulations using MATLAB software with its Simulink and Power System Block set toolboxes.

Performance Improvement Strategy for Parallel-operated Virtual Synchronous Generators in Microgrids

  • Zhang, Hui;Zhang, Ruixue;Sun, Kai;Feng, Wei
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.580-590
    • /
    • 2019
  • The concept of virtual synchronous generators (VSGs) is a valuable means for improving the frequency stability of microgrids (MGs). However, a great virtual inertia in a VSG's controller may cause power oscillation, thereby deteriorating system stability. In this study, a small-signal model of an MG with two paralleled VSGs is established, and a control strategy for maintaining a constant inertial time with an increasing active-frequency droop coefficient (m) is proposed on the basis of a root locus analysis. The power oscillation is suppressed by adjusting virtual synchronous reactance, damping coefficient, and load frequency coefficient under the same inertial time constant. In addition, the dynamic load distribution is sensitive to the controller parameters, especially under the parallel operation of VSGs with different capacities. Therefore, an active power increment method is introduced to improve the precision of active power sharing in dynamic response. Simulation and experimental is used to verify the theoretical analysis findings.

Real-time ULTC control strategy using the dynamic movement capability of LDC variables of artificial neural network (인공신경회로망의 LDC 변수 동적이동 능력을 이용한 실시간 ULTC 제어전략)

  • 고윤석;김호용;이기서;배영철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.541-551
    • /
    • 1996
  • This study develops the real time ULTC(Under Load Tap Changer) control strategy with LDC setting values moved dynamically using artificial neural networks. The suggested strategy can improve the ULTC voltage compensation capability by building 2 types of neural networks, ANNs and ANNg. ANNs recognizes the uncompensated MTr sending voltage change caused by the receiving voltage variation. And ANNg dynamically determines the most appropriate ULTC setting valtage chanbe caused by the receiving voltage variation. And ANNg dynamically determines the most appropriate ULTC setting values by recognizing the voltage level obtained from ANNs, and the section load pattern for each time period. In order to evaluate the suggested approach, the ULTC voltage compensation strategy are simulated on a 8 feeder distribution system. Artificial neural networks developed in this study are implemented in FORTRAN language on PC 386.

  • PDF

Strategy for refinement of nodal densities and integration cells in EFG technique

  • Patel, Bhavana S.S.;Narayan, Babu K.S.;Venkataramana, Katta
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.901-920
    • /
    • 2016
  • MeshFree methods have become popular owing to the ease with which high stress gradients can be identified and node density distribution can be reformulated to accomplish faster convergence. This paper presents a strategy for nodal density refinement with strain energy as basis in Element-Free Galerkin MeshFree technique. Two popular flat plate problems are considered for the demonstration of the proposed strategies. Issue of integration errors introduced during nodal density refinement have been addressed by suggesting integration cell refinement. High stress effects around two symmetrical semi-circular notches under in-plane axial load have been addressed in the first problem. The second considers crack propagation under mode I and mode II fracture loading by the way of introducing high stress intensity through line crack. The computational efficacy of the adaptive refinement strategies proposed has been highlighted.

A Study on Optimal Cable Prestressing and Fabrication Camber of Wando Bridge (완도대교의 최적 케이블장력 및 제작 Camber 산정에 관한 연구)

  • Lee Tae-Yeol;Kim Young-Hoon;Kim Jae-Kwon;Kang Sung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.283-290
    • /
    • 2006
  • Cable-stayed bridge is a bridge that consists of one or more pylons, with cables supporting the deck. Cable-stayed bridges have come into wide use recently because of their economy, stability, and excellent appearance. It is possible to achieve a uniform moment distribution in the stiffening girders mainly by prestressing the cables, which leads to a more economical design in material and weight than other types of bridges. However, to achieve a more uniform moment distribution is vague objective, so it cannot be easily defined as the optimization problem. In other words, the minimization of cost or weight as the objective is not directly related to the optimization of cable prestressing. Therefore, it has been considered as one of the most important, difficult and also interesting topics among many researchers and bridge engineers to determine the optimal tensioning strategy how to apply prestressing forces of the cables of cable-stayed bridge. A number of approaches (Wang et al. 1993, $Negr\~{a}o\;and\;Sim\~{o}es$ 1997, Agrawal 1997, Janjic et al. 2003) to determine the optimal cable tensions have been proposed in the literature. Among these approaches the unit load method (Janjic et al. 2003) is considered in this paper because it can take into account the actual construction process while other approaches are based on the configuration of the final structure only. In this paper, '2-step approach' based on the unit load method is proposed to find the optimal tensioning strategy especially for the atypical asymmetric bridge under construction, which has continuous deck supported by one pylon and stay cables. Some numerical results will be given to show the validity of the new approach suggested in this paper.

  • PDF

A Gigabit Rate Packet Header Collector using Network Processor (네트워크 프로세서를 이용한 기가비트 패킷 헤데 수집기)

  • Choi Pan-an;Choi Kyung-hee;Jung Gi-hyun;Sim Jae-hong
    • The KIPS Transactions:PartC
    • /
    • v.12C no.1 s.97
    • /
    • pp.11-18
    • /
    • 2005
  • This paper proposes a packet header collector, based on a network processor with multi-processor and multi-threads, that shows a high throughput on gigabit network. The proposed collector has an architecture to separate packets coming from gigabit network into headers and payloads, and distribute them to multiple 100Mbit MAC ports. The architecture hiring a unique buffer management method and load distribution strategy among multiple processors is evaluated empirically in depth.