• Title/Summary/Keyword: load distribution factor

Search Result 410, Processing Time 0.031 seconds

Load Shedding Algorithm Using Linear Programming for Congestion Problems by a Major Contingency

  • Shin Ho-Sung;Song Kyung-Bin
    • KIEE International Transactions on Power Engineering
    • /
    • v.5A no.4
    • /
    • pp.371-377
    • /
    • 2005
  • Congestion problems of transmission lines are very important research issues in power system operations. Load curtailment is one of the ways to solve congestion problems by a major contingency. A systematic and effective mechanism for load shedding has been developed by investigating congestion distribution factors and the direct load control program. In this paper, a load shedding algorithm using linear programming for congestion problems by a major contingency is presented. In order to show the effectiveness of the proposed algorithm, it has been tested on the 6-bus sample system and the power system of Korea, and their results are presented.

Gear Analysis of Hydro-Mechanical Transmission System using Field Load Data (필드 부하를 활용한 정유압기계식 변속시스템의 기어 해석)

  • Kim, Jeong-Gil;Lee, Dong-Keun;Oh, Joo-Young;Nam, Ju-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.111-120
    • /
    • 2021
  • A tractor is an agricultural machine that performs farm work, such as cultivation, soil preparation, loading, bailing, and transporting, through attached working implements. Farm work must be carried out on time per the growing season of crops. As a result, the reliability of a tractor's transmission is vital. Ideally, the transmission's design should reflect the actual load during agricultural work; however, configuring such a measurement system is time- and cost-intensive. The design and analysis of a transmission are, therefore, mainly performed by empirical methods. In this study, a tractor with a measurement system was used to measure the actual working load in the field. Its hydro-mechanical transmission was then analyzed using the measured load. It was found that the velocity factor, load distribution factor, lubrication factor, roughness factor, relative notch sensitivity factor, and life factor affect the gear strength of the transmission. Also, loading conditions have a significant influence on the reliability of the transmission. It is believed that transmission reliability can be enhanced by analyzing the actual load on the transmission, as performed in this study.

Reliability Updates of Driven Piles Using Proof Pile Load Test Results (검증용 정재하시험 자료를 이용한 항타강관말뚝의 신뢰성 평가)

  • Park, Jae-Hyun;Kim, Dong-Wook;Kwak, Ki-Seok;Chung, Moon-Kyung;Kim, Jun-Young;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.324-337
    • /
    • 2010
  • For the development of load and resistance factor design, reliability analysis is required to calibrate resistance factors in the framework of reliability theory. The distribution of measured-to-predicted pile resistance ratio was constructed based on only the results of load tests conducted to failure for the assessment of uncertainty regarding pile resistance and used in the conventional reliability analysis. In other words, successful pile load test (piles resisted twice their design loads without failure) results were discarded, and therefore, were not reflected in the reliability analysis. In this paper, a new systematic method based on Bayesian theory is used to update reliability index of driven steel pile piles by adding more pile load test results, even not conducted to failure, into the prior distribution of pile resistance ratio. Fifty seven static pile load tests performed to failure in Korea were compiled for the construction of prior distribution of pile resistance ratio. Reliability analyses were performed using the updated distribution of pile resistance ratio and the total load distribution using First-order Reliability Method (FORM). The challenge of this study is that the distribution updates of pile resistance ratio are possible using the load test results even not conducted to failure, and that Bayesian update are most effective when limited data are available for reliability analysis or resistance factors calibration.

  • PDF

Planning for Construction and Expanding of Distribution Substation Considering Contingency (상정사고를 고려한 배전용 변전소 신,증설 계획 수립)

  • Choi, Sang-Bong;Kim, Dae-Kyeong;Jeong, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.7
    • /
    • pp.303-308
    • /
    • 2001
  • This paper presents algorithm to plan construction and expanding of substation considering contingency accidents by proposing utilization factor according to configuration of substation bank system. In this paper, firstly, proper sphere of supply area by each district which could be standardized with respect to its supply capacity is established under assumption of long term load forecasting. Secondly, goal of utilization ratio based on configuration of substation bank was set to keep reliability by remaining sound bank when it happen to one bank accidents. Finally, it is set up for optimal construction and expanding of substation considering economy and reliability simultaneously about substation to exceed these ratio. To verify proposed algorithm, at first, after adopting a part of Kangnam area in Seoul as area for testing, it is divided into several regions for this area according to power branches of power utility. Secondly, by deriving correlation factor between load demand and economic indicators in these region respectively, the regional load forecasting was performed with economic growth and city plan scenario. Finally, based on the predicted load demand by region and land use data which is identified from air-photographic, the load demand by district was predicted. Also, planning for substation considering contingency is formulated to expand taking into account computing utilization factor which is based on configuration of substation bank respectively.

  • PDF

Derivation of Distributed Generation Impact Factor in a Networked System in Case of Simultaneous Outputs of Multiple Generation Sites

  • Lim, Jung-Uk;Runolfsson, Thordur
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.9
    • /
    • pp.78-83
    • /
    • 2006
  • A new measure, the distributed generation impact factor (DGIF), is used for evaluating the impact of newly introduced distributed generators on a networked distribution or a transmission system. Distribution systems are normally operated in a radial structure. But the introduction of distributed generation needs load flow calculation to analyze the networked system. In the developed framework, the potential share of every generation bus in each line flow of a networked system can be directly evaluated. The developed index does not require the solution of power flow equations to evaluate the effect of the distributed generation. The main advantage of the developed method lies in its capability of considering simultaneous outputs of multiple generation sites.

Dynamic response of size-dependent porous functionally graded beams under thermal and moving load using a numerical approach

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Hani, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.69-84
    • /
    • 2020
  • Based on differential quadrature method (DQM) and nonlocal strain gradient theory (NSGT), forced vibrations of a porous functionally graded (FG) scale-dependent beam in thermal environments have been investigated in this study. The nanobeam is assumed to be in contact with a moving point load. NSGT contains nonlocal stress field impacts together with the microstructure-dependent strains gradient impacts. The nano-size beam is constructed by functionally graded materials (FGMs) containing even and un-even pore dispersions within the material texture. The gradual material characteristics based upon pore effects have been characterized using refined power-law functions. Dynamical deflections of the nano-size beam have been calculated using DQM and Laplace transform technique. The prominence of temperature rise, nonlocal factor, strain gradient factor, travelling load speed, pore factor/distribution and elastic substrate on forced vibrational behaviors of nano-size beams have been explored.

Prediction of the Fatigue Life of Deep Groove Ball Bearing Under Radial and Moment Loads - Fatigue Life Tests and Proposal of the Life Adjustment Factors (반경방향과 모멘트하중 하에서의 깊은홈 베어링의 피로수명평가 - 수명시험 및 수명보정계수 제안)

  • 김완두;한동철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3149-3158
    • /
    • 1994
  • In this paper, using the formulation of dynamic equivalent load considering the effects of moment load and the equation to estimate the cage rotational speed, the new life equation of deep groove ball bearing under radial and moment loads was proposed. Fatigue life test apparatus with the measuring equipment of shaft and cage speed was designed and developed to be capable of subjecting combined radial and moment load. Fatigue life tests were executed by sudden death test method and the reliability of fatigue lives was evaluated by Weibull distribution analysis. From the results of fatigue tests and analysis, the relationships between film parameters and life adjustment factors were acquired. And it was turned out that so as to estimate the effect of moment load on fatigue life, the life adjustment factor as well as the dynamic equivalent load must be taken into account.

A Probabilistic Analysis on Logarithmic-Spiral Failure of Slope in Consideration of Load Variance (하중의 분산성을 고려한 대수누선사면 파괴의 확률론적 해석)

  • 정성관;권무남
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.39-50
    • /
    • 1988
  • Until now, most probabilistic approaches to the slope stability analysis have been accomplished on the arc failure surface without load. In this study, the relationships between the probability of failure and the safety factor are investigated when the shape of failure is logarithmic spiral on the homogeneous slope with ground water level, the probability distributions of the load and the strength parameter of soil being assumed as normal distribution, log-normal distribution and beta distribution. The results obtained are as follows; 1. For the same safety factor, the design of slope is more reasonable by using the probability of failure than by the safety factor because the probability of failure is increased as the coefficient of variation is increased. 2, The safety factor is more reasonably determined by the coefficient of variation of the strength parameter than by the field condition when the safety factor is applied to design of slope.

  • PDF

Estimation of Contact Stress Distribution Factor in Bolt Joint with variable Fastening torque (체결력에 따른 볼트 결합부의 접촉응력분포계수 평가)

  • 김종규
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.73-79
    • /
    • 1999
  • Most of mechanical structures are combined of substructures such as beams and/or plates. There are few systems with unibody structures but are many systems with united body structures. Generally the dynamic a nalysis of whole structures is performed under alternation load. In the structure design, the analysis of each bolted joint is more important than others for zero severity. This paper presents the analysis method of contact stress distribution factor in the bolted joint with variable fastening torque on joints in the structure. At first, a static vibration test was performed to find out a nominal stress of bolt jointed plates from the relationship between natural frequency and nominal stress. Then a contact stress was computed at contact point between bolt and plate in the structure. It is believed that the proposed method has promisiong implications for safer design with index of contact stress distribution factor and has merits for cost-down and saving time at the beginning of vehicle development.

  • PDF

A Study on the Analytical Approach for Reliability Assessment in Distribution Systems Interconnected with Dispersed Storage and Generation Systems (분산형전원이 도입된 배전계통의 신뢰도평가에 관한 연구)

  • Song, Seok-Hwan;Rho, Dae-Seok;Choi, Jae-Seok;Cha, Jun-Min
    • Proceedings of the KIEE Conference
    • /
    • 2001.11b
    • /
    • pp.286-288
    • /
    • 2001
  • This paper deals with the analytical approach for the reliability assessment in radially operated distribution systems. The existing indexes can consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, This paper presents the new indexes considering the expected interruption cost for the load section and protection systems in the cafe where the Dispersed Storage and Generation Systems are introduced to distribution systems. And this paper shows the effectiveness of the proposed methods by simulating at the model systems.

  • PDF