• Title/Summary/Keyword: load distribution factor

Search Result 411, Processing Time 0.029 seconds

Pushover Analysis of a 5-Story RC OMRF Considering Inelastic Shear Behavior of Beam-Column Joint (보-기둥 접합부 비탄성 전단거동을 고려한 5층 철근콘크리트 보통모멘트골조의 푸쉬오버해석)

  • Kang, Suk-Bong;Kim, Tae-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.517-524
    • /
    • 2012
  • In this study, the effects of the inelastic shear behavior of beam-column joint and the vertical distribution of lateral load are evaluated considering higher modes on the response of RC OMRF using the pushover analysis. A structure used for the analysis was a 5-story structure located at site class SB and seismic design category C, which was designed in accordance with KBC2009. Bending moment-curvature relationship for beam and column was identified using fiber model. Also, bending moment-rotation relationship for beam-column joint was calculated using simple and unified joint shear behavior model and moment equilibrium relationship for the joint. The results of pushover analysis showed that, although the rigid beam-column joint overestimated the stiffness and strength of the structure, the inelastic shear behavior of beam-column joint could be neglected in the process of structural design since the average response modification factor satisfied the criteria of KBC2009 for RC OMRF independent to inelastic behavior of joint.

Experimental study on hysteretic behavior of steel moment frame equipped with elliptical brace

  • Jouneghani, Habib Ghasemi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.891-907
    • /
    • 2020
  • Many studies reveal that during destructive earthquakes, most of the structures enter the inelastic phase. The amount of hysteretic energy in a structure is considered as an important criterion in structure design and an important indicator for the degree of its damage or vulnerability. The hysteretic energy value wasted after the structure yields is the most important component of the energy equation that affects the structures system damage thereof. Controlling this value of energy leads to controlling the structure behavior. Here, for the first time, the hysteretic behavior and energy dissipation capacity are assessed at presence of elliptical braced resisting frames (ELBRFs), through an experimental study and numerical analysis of FEM. The ELBRFs are of lateral load systems, when located in the middle bay of the frame and connected properly to the beams and columns, in addition to improving the structural behavior, do not have the problem of architectural space in the bracing systems. The energy dissipation capacity is assessed in four frames of small single-story single-bay ELBRFs at ½ scale with different accessories, and compared with SMRF and X-bracing systems. The frames are analyzed through a nonlinear FEM and a quasi-static cyclic loading. The performance features here consist of hysteresis behavior, plasticity factor, energy dissipation, resistance and stiffness variation, shear strength and Von-Mises stress distribution. The test results indicate that the good behavior of the elliptical bracing resisting frame improves strength, stiffness, ductility and dissipated energy capacity in a significant manner.

Characteristics Analysis for Voltage, Current & Capacity of Condenser at Voltage Unbalance (전압 불평형시 콘덴서 전압, 전류, 용량 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.145-151
    • /
    • 2010
  • Voltage unbalance is regarded as a power quality problem of significant at the user application. Although the voltages are quite well balanced at the transmission system, the voltage level of utilization can be unbalanced due to the unequal system impedances and the unequal distribution of single phase loads. Capacitor is generally used for power-factor compensation and reducing harmonics of non linear load with reactor. If voltage unbalance exists, current unbalance is generated and it will be reflected in the capacity variance. When the reactor and condenser are used at the same location, generally its trouble rate is high. And it is very important checking out that how the variance of voltage, current and capacity of condenser is proceeded by the voltage unbalance. In this paper, we calculated that voltage, current and capacity of condenser are within the tolerance limit of official regulations in the event of voltage unbalance with/without reactor.

Bending behaviour of FGM plates via a simple quasi-3D and 2D shear deformation theories

  • Youcef, Ali;Bourada, Mohamed;Draiche, Kada;Boucham, Belhadj;Bourada, Fouad;Addou, Farouk Yahia
    • Coupled systems mechanics
    • /
    • v.9 no.3
    • /
    • pp.237-264
    • /
    • 2020
  • This article investigates the static behaviour of functionally graded (FG) plates sometimes declared as advanced composite plates by using a simple and accurate quasi-3D and 2D hyperbolic higher-order shear deformation theories. The properties of functionally graded materials (FGMs) are assumed to vary continuously through the thickness direction according to exponential law distribution (E-FGM). The kinematics of the present theories is modeled with an undetermined integral component and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate; therefore, it does not require the shear correction factor. The fundamental governing differential equations and boundary conditions of exponentially graded plates are derived by employing the static version of principle of virtual work. Analytical solutions for bending of EG plates subjected to sinusoidal distributed load are obtained for simply supported boundary conditions using Navier'is solution procedure developed in the double Fourier trigonometric series. The results for the displacements and stresses of geometrically different EG plates are presented and compared with 3D exact solution and with other quasi-3D and 2D higher-order shear deformation theories to verify the accuracy of the present theory.

A Study on the Customer Voltage Characteristic Based on the Test Devices for PV Systems (태양광전원 계통연계 시험장치에 의한 수용가전압 특성에 관한 연구)

  • Park, Hyeon-Seok;Son, Joon-Ho;Ji, Seong-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4529-4536
    • /
    • 2010
  • This paper develops an interconnection test devices for photovoltaic(PV) systems composed of distribution system simulator, PV systems simulator and control and monitoring systems using the LabVIEW S/W, and simulates the customer voltage characteristics considering the 3 parameters on the introduction capacity for PV systems, system configuration and load factor. This paper also proposes a new calculation algorithm for voltage profile to make a comparison between calculation values and test device values. The results show that the test results for the normal operation characteristics of PV systems is very practical and effective.

Effect of tapered-end shape of FRP sheets on stress concentration in strengthened beams under thermal load

  • El Mahi, Benaoumeur;Kouider Halim, Benrahou;Sofiane, Amziane;Khalil, Belakhdar;Abdelouahed, Tounsi;Adda Bedia, El Abbes
    • Steel and Composite Structures
    • /
    • v.17 no.5
    • /
    • pp.601-621
    • /
    • 2014
  • Repairing and strengthening structural members by bonding composite materials have received a considerable attention in recent years. The major problem when using bonded FRP or steel plates to strengthen existing structures is the high interfacial stresses that may be built up near the plate ends which lead to premature failure of the structure. As a result, many researchers have developed several analytical methods to predict the interface performance of bonded repairs under various types of loading. In this paper, a numerical solution using finite - difference method (FDM) is used to calculate the interfacial stress distribution in beams strengthened with FRP plate having a tapered ends under thermal loading. Different thinning profiles are investigated since the later can significantly reduce the stress concentration. In the present theoretical analysis, the adherend shear deformations are taken into account by assuming a parabolic shear stress through the thickness of both beam and bonded plate. The shear correction factor for I-section beams is also included in the solution. Numerical results from the present analysis are presented to demonstrate the advantages of use the tapers in design of strengthened beams.

Experimental Study on the Drawbar Pull and Structural Safety of an Onion Harvester Attached to a Tractor (트랙터 부착형 양파수확기의 작업 속도에 따른 견인 부하와 구조 안정성에 관한 실험적 연구)

  • Shin, Chang-Seop;Kim, Jun-Hee;Ha, Yu-Shin;Park, Tusan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.16-25
    • /
    • 2019
  • Recently, due to labor shortages in rural areas within South Korea, the demand for upland-field machinery is growing. In addition, there is a lack of development of systematic performance testing of upland-field machinery. Thus, this study examined structural safety and drawbar pull based on soil properties, as a first step for systematic performance testing on the test bed. First, the properties of soil samples from 10 spots within the experimental site were examined. Second, the strain was measured and converted into stress on 8 points of an onion harvester that are likely to fail. More specifically, the chosen parts are linked to the power, along with the drawbar pull, using a 6-component load cell equipped between the tractor and the onion harvester. The water content of the soil ranged between 5.7%-7.5%, and the strength between 250-1171 kPa. The test soil was subsequently classified into loam soil based on the size distribution ratio of the sieved soil. The onion harvester can be considered as structurally safe based on the derived safety factor and the drawbar pull of 115-1194 kgf, according to the working speed based on agricultural fieldwork.

A novel hyperbolic integral-Quasi-3D theory for flexural response of laminated composite plates

  • Ahmed Frih;Fouad Bourada;Abdelhakim Kaci;Mohammed Bouremana;Abdelouahed Tounsi;Mohammed A. Al-Osta;Khaled Mohamed Khedher;Mohamed Abdelaziz Salem
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.233-250
    • /
    • 2023
  • This paper investigates the flexural analysis of isotropic, transversely isotropic, and laminated composite plates using a new higher-order normal and shear deformation theory. In the present theory, only five unknown functions are involved compared to six or more unknowns used in the other similar theories. The developed theory does not need a shear correction factor. It can satisfy the zero traction boundary conditions on the top and the bottom surfaces of the plate as well as account for sufficient distribution of the transverse shear strains. The thickness stretching effect is considered in the computation. A simply supported was considered on all edges of the plate. The plate is subjected to uniform and sinusoidal distributed load in the static analysis. Laminated composite, isotropic, and transversely isotropic plates are considered. The governing equations are obtained utilizing the virtual work principle. The differential equations are solved via Navier's procedure. The results obtained from the developed theory are compared with other higher-order theories considered in the previous studies and 3D elasticity solutions. The results showed that the proposed theory accurately and effectively predicts the bidirectional bending responses of laminated composite plates. Several parametric studies are presented to illustrate the various parameters influencing the static response of the laminated composite plates.

A Study on the Rock Pressure Wedge Failure During Ground Excavation (대규모 지하굴착시 쐐기파괴로 인하여 발생하는 토압에 관한 연구)

  • 이승호
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.1-11
    • /
    • 2001
  • The geological characteristics of Korea are that we can encounter the rock layer only after 10m of excavation, methods to presume the rock pressure distribution of the rock layer is urgently needed. When using the existing empiric science of Terzaghi-Peck, Tschebotarioff to measure the rock pressure of the rock layer, underestimate the real strength because of the cohesion is ignored. Therefore calculating the horizontal sliding force of wedge block, which includes the dips and shear strength of discontinuities and surcharge load etc., think to be to getting a closer rock stress of the real rock pressure acting upon the earth structure in rock mass. This research use Coulomb soil pressure theory assuming that the backfill soil will yield wedge failure when it has cohesion, applying Prakash-Saran(l963), and then it uses equilibrium of force and shear strength $\tau$=c+$\sigma$tan $\Phi$ of the cliscontinuities. Analyzing shear strength and dips of cliscontinuities using calculated theory according to the status of discontinuities aperture, we were able to find out that because the cohesion and friction angle of the rock layer itself is large enough, how the dip directions and dips facing the excavation face is the only factor deciding whether or not the rock stress is applied. The evaluated theory of this research should be strictly estimated, so that the many parameters such as c, $\Phi$value, types and structures of rock class, excessive lateral pressure, dynamic load, earthquake, needed later when calculating shear strength of discontinuities and especially the ground water effect acting on rock layer should be coumpted with many measuring data achieve at the insite to study the application.

  • PDF

The influence of occlusal loads on stress distribution of cervical composite resin restorations: A three-dimensional finite element study (교합력이 치경부 복합레진 수복물의 응력분포에 미치는 영향에 관한 3차원 유한요소법적 연구)

  • Park, Chan-Seok;Hur, Bock;Kim, Hyeon-Cheol;Kim, Kwang-Hoon;Son, Kwon;Park, Jeong-Kil
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.246-257
    • /
    • 2008
  • The purpose of this study was to investigate the influence of various occlusal loading sites and directions on the stress distribution of the cervical composite resin restorations of maxillary second premolar, using 3 dimensional (3D) finite element (FE) analysis. Extracted maxillary second premolar was scanned serially with Micro-CT (SkyScan1072; SkyScan, Aartselaar, Belgium). The 3D images were processed by 3D-DOCTOR (Able Software Co., Lexington, MA, USA). HyperMesh (Altair Engineering. Inc., Troy, USA) and ANSYS (Swanson Analysis Systems. Inc., Houston, USA) was used to mesh and analyze 3D FE model. Notch shaped cavity was filled with hybrid (Z100, 3M Dental Products, St. Paul, MN, USA) or flowable resin (Tetric Flow, Viva dent Ets., FL-9494-Schaan, Liechtenstein) and each restoration was simulated with adhesive layer thickness ($40{\mu}m$). A static load of 200 N was applied on the three points of the buccal incline of the palatal cusp and oriented in $20^{\circ}$ increments, from vertical (long axis of the tooth) to oblique $40^{\circ}$ direction towards the buccal. The maximum principal stresses in the occlusal and cervical cavosurface margin and vertical section of buccal surfaces of notch-shaped class V cavity were analyzed using ANSYS. As the angle of loading direction increased, tensile stress increased. Loading site had little effect on it. Under same loading condition. Tetric Flow showed relatively lower stress than Z100 overall, except both point angles. Loading direction and the elastic modulus of restorative material seem to be important factor on the cervical restoration.

  • PDF