• Title/Summary/Keyword: load coefficient

Search Result 1,577, Processing Time 0.027 seconds

Characteristics of Smart Skin for Wireless LAN system under Buckling Load (무선 랜 시스템용 스마트 스킨의 좌굴 특성 연구)

  • 전지훈;유치상;황운봉;박현철;박위상
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.42-45
    • /
    • 2001
  • The characteristics of smart skin for wireless LAN system under compression load are investigated. The smart skin structure is composed of 3 layers of face material and 2 layers of core material. Theoretical formula for determining buckling load is derived by Rayleigh-Ritz method and compared with experimental result. The maximum length of specimen that buckling does not occur is determined by only face material. In the experiment, if load supporting capability and the antenna property such as radiation pattern and reflection coefficient were examined.

  • PDF

C.A.D. and Characteristics of High Frequency Induction Heating Load Circuit (고주파 유도가열 부하회로의 C.AcD와그 발)

  • Ju-Hong Kim;Ki-Hwan Eom
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.4
    • /
    • pp.153-153
    • /
    • 1985
  • A method of computer aided design (C.A.D.) is proposed to analize a load circuit of a high frequency induction heating. Various formulas are derived from the properity of the heating load, which is useful for the design of heating materials. A load circuit which is designed by the proposed C.A.D. is realized and tested. The experimental results show in good agreement with the theoritical analysies. Especially the result reveal that the power transfer efficiency increases as the Q and coupling coefficient of the work coil increase.

Reliability and code level

  • Kasperski, Michael;Geurts, Chris
    • Wind and Structures
    • /
    • v.8 no.4
    • /
    • pp.295-307
    • /
    • 2005
  • The paper describes the work of the IAWE Working Group WBG - Reliability and Code Level, one of the International Codification Working Groups set up at ICWE10 in Copenhagen. The following topics are covered: sources of uncertainties in the design wind load, appropriate design target values for the exceedance probability of the design wind load for different structural classes with different consequences of a failure, yearly exceedance probability of the design wind speed and specification of the design aerodynamic coefficient for different design purposes. The recommendations from the working group are summarized at the end of the paper.

An Evaluation of Influencing Parameters on Biaxial Bending Moment Strength of Reinforced Concrete Columns (철근 콘크리트 기둥의 2축휨 강도에 영향을 미치는 변수 고찰)

  • Yoo, Suk-Hyung;Bahn, Byong-Youl;Shin, Sung-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 2003
  • In the PCA Load Contour Method, the biaxial bending design coefficient of columns(${\beta}$) is based on the equivalent rectangular stress block (RSB). And coefficient of ${\beta}$ estimates the reinforcement index to be a influencing parameter on biaxial moment strength of RC columns without considering the arbitrary condition of bar arrangement. The experimental results of high strength concrete (HSC) columns subjected to combined axial load and biaxial bending moment were compared to the analysis results of RSB method. As result, the accuracy of RSB method is still acceptable for HSC columns and, as the reinforcement is placed densely in each corner of column section, the ${\beta}$ is decreased.

Finite Element Analysis of the Inclined Subsurface Cracks in a Homogeneous Body Under a Moving Compressive Load

  • Lee, Kyung-Sick;Chung, Gyu-Sung
    • KSTLE International Journal
    • /
    • v.5 no.1
    • /
    • pp.7-13
    • /
    • 2004
  • The inclined subsurface cracks in a homogeneous body subjected to a moving compressive load is analyzed with the finite element method (FEM) considering friction on the crack surface. The stress intensity factors for the inclined subsurface cracks are evaluated numerically for various cases such as different inclined angles and changes in the coefficient of friction. The effects of the inclined angle and the coefficient of friction on the stress intensity factor are discussed. The difference between the behaviors of the parallel subsurface crack and those of the inclined subsurface crack is also examined.

Evaluation of the Sliding Frictional Characteristics at the Different Loading Mechanisms and Normal Stiffness (마찰시험기의 하중부과 방법과 수직방향 강성 변화에 따른 미끄럼 마찰특성 평가)

  • 윤의성;공호성;권오관;오재응
    • Tribology and Lubricants
    • /
    • v.12 no.2
    • /
    • pp.55-64
    • /
    • 1996
  • Frictional characteristics with the change of loading method and normal stiffness at dry sliding surfaces were experimentally and theoretically evaluated in this study. For the study, a ball-on-disk typed test rig was built and implemented, which allowed a proper selection of loading mechanism and normal stiffness of the test rig. Loading method were varied from dead weight to pneumatic cylinder and spring loading, and the normal stiffness was varied by a spring of different stiffness. Test results showed that frictional characteristics at various loading methods were different even though the operating variables were the same. Discrepancy in the frictional characteristics, such as coefficient of friction and fluctuation in the normal load, were explained by the change in dynamic parameters of the test rigs. Results also showed that coefficient of friction, which defines as a ratio of frictional force divided a normal load, could be differently evaluated in the calculation when fluctuation in the normal load was significant.

Evaluation of Running Stability of Tilting Trains in Conventional Curved Track (틸팅차량의 기존선 곡선부 주행안정성 평가)

  • 엄기영;엄주환;유영화;최정호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • The investigation of running stability of the train for curved track is necessary in view of preventing the train from derailment caused by unbalanced forces transferred from the wheel and guaranteeing moderate level of running safety in curve sections. This paper carried out an analysis of running stability of tilting trains in conventional line which the test operation of tilting trains under development are scheduled. For this purpose, the wheel load and lateral pressure to the rail are evaluated. The criteria for the calculated wheel load and derailment coefficient are compared to the design criteria for running stability. It is founded that the running stability of tilting trains for curved track is guaranteed to have sufficient safety and the train speed in curve is governed by the geometric layout of track rather than the criteria for running stability.

A review of effects of partial dynamic loading on dynamic response of nonlocal functionally graded material beams

  • Ahmed, Ridha A.;Fenjan, Raad M.;Hamad, Luay Badr;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.9 no.1
    • /
    • pp.33-48
    • /
    • 2020
  • With the use of differential quadrature method (DQM), forced vibrations and resonance frequency analysis of functionally graded (FG) nano-size beams rested on elastic substrate have been studied utilizing a shear deformation refined beam theory which contains shear deformations influence needless of any correction coefficient. The nano-size beam is exposed to uniformly-type dynamical loads having partial length. The two parameters elastic substrate is consist of linear springs as well as shear coefficient. Gradation of each material property for nano-size beam has been defined in the context of Mori-Tanaka scheme. Governing equations for embedded refined FG nano-size beams exposed to dynamical load have been achieved by utilizing Eringen's nonlocal differential law and Hamilton's rule. Derived equations have solved via DQM based on simply supported-simply supported edge condition. It will be shown that forced vibrations properties and resonance frequency of embedded FG nano-size beam are prominently affected by material gradation, nonlocal field, substrate coefficients and load factors.

Condensation of independent variables in free vibration analysis of curved beams

  • Mochida, Yusuke;Ilanko, Sinniah
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.1
    • /
    • pp.45-59
    • /
    • 2016
  • In this paper, the condensation method which is based on the Rayleigh-Ritz method, is described for the free vibration analysis of axially loaded slightly curved beams subject to partial axial restraints. If the longitudinal inertia is neglected, some of the Rayleigh-Ritz minimization equations are independent of the frequency. These equations can be used to formulate a relationship between the weighting coefficients associated with the lateral and longitudinal displacements, which leads to "connection coefficient matrix". Once this matrix is formed, it is then substituted into the remaining Rayleigh-Ritz equations to obtain an eigenvalue equation with a reduced matrix size. This method has been applied to simply supported and partially clamped beams with three different shapes of imperfection. The results indicate that for small imperfections resembling the fundamental vibration mode, the sum of the square of the fundamental natural and a non-dimensional axial load ratio normalized with respect to the fundamental critical load is approximately proportional to the square of the central displacement.

Study on the Characteristics of Consolidation(II) -The Effects of Load Increment Ratio Consolidation Characteristics- (압밀(壓密) 특성(特性)에 관(關)한 연구(硏究)(II) -하중(荷重) 증가율(增加率)이 압밀특성(壓密特性)에 미치는 영향(影響)-)

  • Kang, Yea-Mook;Ryu, Neung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.4 no.1
    • /
    • pp.88-93
    • /
    • 1977
  • The following is the result of experiment on consolidation test under various load increment ratios by alternation of standard load increment ratio. The more load increment ratio was, the more settlement was resulted. But expansions were not associated with load increment ratios. Primary consolidation took longer period to complete as load increment ratio was decreased. And under the condition of over-consolidated range, the completion of primary consolidation took longer period as the load was incremented. Under the condition of normal consolidated range, there was no change in time of completing primary consolidation. The coefficient of consolidation was decreased with increment of consolidation load, and the coefficient of consolidation had high values as the load increment ratio was increased. The values of ratio of secondary consolidation was highest near the transition point of consolidation curve.

  • PDF