• 제목/요약/키워드: load and resistance factors

검색결과 231건 처리시간 0.027초

하이브리드 FRP보강근 콘크리트의 손상 자가진단 (Self- Diagnosis of Damage in Hybrid FRP Reinforced Concrete)

  • 박석균;김대훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.233-237
    • /
    • 2005
  • For giving self-diagnosing capability, a method based on monitoring the changes in the electrical resistance of hybrid FRP reinforced concrete has been tested. Then after examining change in the value of electrical resistance of carbon fiber in CFRP, CFGFRP, CFAFRP and e.t.c., before and after the occurrence of cracks and fracture in hybrid FRP reinforced concrete at each flexural weight-stage, the correlations of each factors were analyzed. As the results, it is clarified that when the carbon fiber tows fracture, the electrical resistance of it increase largely, and afterwards hybrid FRP composites can be resist the load due to the presence of the reinforced fiber, for example, glass fiber or aramid fiber tows.

  • PDF

등산스틱 시험규격 개발 연구 (Development of Standard Test Specification for Hiking Stick)

  • 길세기;김장회;김태완;이상철;황종학
    • 재활복지공학회논문지
    • /
    • 제9권4호
    • /
    • pp.309-317
    • /
    • 2015
  • 본 연구에서는 노약자들의 등산활동 시 많이 사용되는 등산스틱의 안전과 성능의 평가를 위한 등산스틱 시험규격 안을 제안하였다. 연관규격조사, 관련 특허 및 논문 조사, 제품현황조사, 파손사례조사, 전문가조사 등을 통해 9가지 등산스틱 성능(안전)요인을 도출하였으며 이 요인들을 시험하기 위한 규격시험장비 3종(비틀림 및 직진도 시험장비, 내구성 시험장비, 스파이크 및 팁 내구성 시험장비)을 설계 제작하였다. 시험에 사용한 시료는 2014년 9월 네이버 쇼핑 기준 판매순위 상위 브랜드 15개의 일자형 손잡이 제품(각 제품별 6개 시료)을 선정하여 사용하였다. 성능요인에 대한 실제시료시험결과 및 전문가회의를 통해 총 6가지의 시험규격 항목 안(편심하중, 길이조절부 압축, 손목걸이 하중, 바스켓 하중, 스파이크 및 팁 내구성, 등산스틱 당김)을 도출하였다.

  • PDF

도상횡저항력의 확률분포 특성에 따른 CWR 궤도의 좌굴 민감도 (Buckling Sensitivity of CWR Tracks according to the Characteristics of the Probability Distribution of the Lateral Ballast Resistance)

  • 윤경민;배현웅;강태구;김명수;임남형
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.423-426
    • /
    • 2011
  • The excessive axial load occurred in an immovable zone of continuous welded rail(CWR) tracks threatens the security of running trains due to the track buckling in extreme hot summer. The influence factors, such as rail temperature for compressive stress, ballast resistance for track stiffness and initial imperfection of track for tracks irregularity are uncertain track parameters that are randomly varied by climate conditions, operating conditions and maintenance of track etc. So, buckling of CWR tracks has very high uncertainties. Therefore, applying the probabilistic approach method is essential in order to rationally consider the uncertainty and randomness of the various parameters. In this study, buckling sensitivity analysis was carried out with respect to the characteristics of probability distribution of lateral ballast resistance using the buckling probability evaluation system of CWR tracks developed by our research team.

  • PDF

The Effect on the Friction Forces of Big-End Bearing by the Aerated Lubricant

  • Park, Young-Hwan;Jang, Si-Youl
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.425-426
    • /
    • 2002
  • Lineal and angular movements of many engine components make the lubricant absorb air and the aerated lubricant greatly influences the clearance performance of contacting behaviors of engine components such as big-end bearing, cam and tappet, etc. This study investigates the behaviors of aerated lubricant in the gap between con-rod bearing and proceeding which is one of the most frictional energy consuming components in the engine. Our assumption for the analysis of aerated lubricant film is that the film formation is influenced by the two major factors. One is the density characteristics of the lubricant due to the volume change of lubricant by absorbing the bubbles and the other is the viscosity characteristics of the lubricant due to the surface tension of the bubble in the lubricant. In our investigation, it is found that these two major factors surprisingly increase the load capacity in certain ranges of bubble sizes and densities. Frictional forces are also influenced by the aerated bubble size and density, which eventually enlarge the shear resistance due the surface tension, Modified Reynolds' equation is developed for the computation of fluid film pressure with the effects of aeration ratio under the dynamic loading condition. From the calculated load capacity by solving modified Reynolds' equation, proceeding locus is computed with Mobility method at each time step.

  • PDF

Fire Resistance Studies on High Strength Steel Structures

  • Wang, Wei-Yong;Xia, Yue;Li, Guo-Qiang
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.287-298
    • /
    • 2018
  • High strength steels have been widely applied in recent years due to high strength and good working performance. When subjected to fire conditions, the strength and elastic modulus of high strength steels deteriorate significantly and hence the load bearing capacity of structures reduces at elevated temperatures. The reduction factors of mechanical properties of high strength steels are quite different from mild steels. Therefore, the fire design methods deduced from mild steel structures are not applicable to high strength steel structures. In recent ten years, the first author of this paper has carried out a lot of fundamental research on fire behavior of high strength steels and structures. Summary of these research is presented in this paper, including mechanical properties of high strength steels at elevated temperature and after fire exposure, creep response of high strength steels at elevated temperature, residual stresses of welded high strength steel member after fire exposure, fire resistance of high strength steel columns, fire resistance of high strength steel beams, local buckling of high strength steel members, and residual strength of high strength steel columns after fire exposure. The results show that the mechanical properties of high strength steel in fire condition and the corresponding fire resistance of high strength steel structures are different from those of mild steel and structures, and the fire design methods recommended in current design codes are not applicable to high strength steel structures.

해상 풍력발전기 기초의 안전율에 관한 설계기준 분석 연구 (Comparison of Design Strands for Safety Factor of Offshore Wind Turbine Foundation)

  • 장화섭;김호선;이경우;김만응
    • 대한토목학회논문집
    • /
    • 제32권2B호
    • /
    • pp.149-152
    • /
    • 2012
  • 본 연구는 해상풍력발전기 기초 설계에 사용되는 IEC 61400-3, DNV-OS-J101, GL Wind, EUROCODE, AASHTO 및 국내 설계기준의 설계방법 및 안전율의 정도를 비교, 분석함으로써, 국내에서 해상풍력발전기 기초 설계시 필요한 제반사항을 제공하고자 한다. 해상풍력발전기 기초 설계에 관한 국내외 설계기준을 분석한 결과 설계법은 크게 설계접근법, 하중저항 설계법, 허용응력설계법을 적용하고 있으며, 각 설계법에 따른 안전율 정도를 분석한 결과 하중저항계수 설계법과 설계접근법은 거의 유사한 수준의 안전율을 확보하고 있는 반면, 허용응력설계법에서는 다소 보수적인 안전율을 적용하고 있어 해상풍력발전기 기초의 경제적 설계를 위한 국내 설계기준 개발이 필요할 것으로 판단된다.

Wind load characteristics and effects of 1000kV UHV substation frame based on HFFB

  • Hao Tang;Fanghui Li;Xudong Zhi;Jie Zhao
    • Wind and Structures
    • /
    • 제38권6호
    • /
    • pp.477-492
    • /
    • 2024
  • This study presents a comprehensive investigation of wind load characteristics and wind-induced responses associated with different wind incidence angles and terrains of the 1000kV UHV substation frame. High-frequency force balance (HFFB) force measurement wind tunnel tests are conducted on the overall and segment models to characterize wind loads characteristics such as the aerodynamic force coefficients and the shape factors. The most unfavorable wind incidence angles and terrains for aerodynamic characteristics are obtained. A finite element model of the substation frame is built to determine the wind-induced response characters based on the aerodynamic force coefficients and bottom forces of the segment models. The mean and root mean square (RMS) values of displacement responses at different heights of the frame structure are compared and analyzed. The influence of wind incidence angle and terrains on wind-induced responses is also examined. The displacement responses in terms of the crest factor method are subsequently transformed into dynamic response factors. The recommended values of dynamic response factors at four typical heights have been proposed to provide a reference for the wind resistance design of such structures.

온돌난방제어 시 시스템저항 변화에 따른 유량 밸런싱에 관한 연구 (A Study for Flow-rate Balancing when the System Resistance Changes in the Control of the Radiant Floor Heating System)

  • 최정민;이규남;류성룡;김광우;여명석
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2005년도 동계학술발표대회 논문집
    • /
    • pp.129-134
    • /
    • 2005
  • The behavior of whole system is affected by a minor change of system in the hydronic radiant floor heating system. Under partial load condition, the change of system resistance causes overflow of supply water. This unexpected effect is the cause of several problems in the heating system. In this study, we find some factors were validated with several computer simulations. After validation of this result, several conceptual solutions are evaluated to prevent overflow.

  • PDF

Experimental and numerical investigation on in-plane behaviour of hollow concrete block masonry panels

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Iyer, Nagesh R.;Lakshmanan, N.;Bhagavan, N.G.
    • Computers and Concrete
    • /
    • 제10권1호
    • /
    • pp.1-18
    • /
    • 2012
  • This paper presents the details of studies conducted on hollow concrete block masonry (HCBM) units and wall panels. This study includes, compressive strength of unit block, ungrouted and grouted HCB prisms, flexural strength evaluation, testing of HCBM panels with and without opening. Non-linear finite element (FE) analysis of HCBM panels with and without opening has been carried out by simulating the actual test conditions. Constant vertical load is applied on the top of the wall panel and then lateral load is applied in incremental manner. The in-plane deformation is recorded under each incremental lateral load. Displacement ductility factors and response reduction factors have been evaluated based on experimental results. From the study, it is observed that fully grouted and partially reinforced HCBM panel without opening performed well compared to other types of wall panels in lateral load resistance and displacement ductility. In all the wall panels, shear cracks originated at loading point and moved towards the compression toe of the wall. The force reduction factor of a wall panel with opening is much less when compared with fully reinforced wall panel with no opening. The displacement values obtained by non-linear FE analysis are found to be in good agreement with the corresponding experimental values. The influence of mortar joint has been included in the stress-strain behaviour as a monolith with HCBM and not considered separately. The derived response reduction factors will be useful for the design of reinforced HCBM wall panels subjected to lateral forces generated due to earthquakes.

데크플레이트의 웨브국부좌굴에 관한 내력식 제안 (A Proposal for Strength Formula of Web Crippling in Trapezoidal Sheeting)

  • 신태송
    • 한국강구조학회 논문집
    • /
    • 제13권6호
    • /
    • pp.641-649
    • /
    • 2001
  • 본 논문에서는 데크플레이트의 웨브 국부좌굴에 관한 실용적인 내력식을 제안하고자 한다. 실험에서 유추된 해석모델을 이론적으로 규명한 기존의 연구를 바탕으로 내력에 영향을 미치는 주요 변수들을 조사 분석하여 관련 함수들을 유도한다. 각 변수들을 기존의 실험자료와 종합적으로 비교 분석하여 간편한 내력식을 제안한다. 유럽기준 EC 3 부록 Z 에 따른 통계평가로부터 저항 부분안전계수 ${\gamma}_M$ 을 구하며 목표로 하는 값 1.1과 비교되어진다.

  • PDF