• Title/Summary/Keyword: load and resistance factor design (LRFD)

Search Result 88, Processing Time 0.035 seconds

Design Comparison of Totally Prefabricated Bridge Substructure Systems Designed by Present Design and LRFD Methods (현행설계법 및 하중저항계수설계법에 의한 완전 조립식 교량 하부구조의 설계결과 비교)

  • Kim, Tae-Hoon;Kim, Young-Jin;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 2011
  • The design comparison and nonlinear analysis of totally prefabricated bridge substructure systems are performed. The prefabricated bridge substructures are designed by the methods of present design and load and resistance factor design (LRFD). For the design, the current Korea Highway Bridge Code (KHBD), with DB-24 and DL-24 live loads, is used. This study evaluates the present design method of KHBD (2005) and AASHTO-LRFD (2007) for totally prefabricated bridge substructure systems. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures, was used.

A Study on the Comparisom of Load-carrying Capacity by the rating Methods of Bridges (교량평가법에 의한 내하력 비교에 관한 연구)

  • Han, Sang Chul;Yang, Seung Ie
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.477-492
    • /
    • 2001
  • About half of bridges in United States are considered to be deficient and therefore are in need of repair or replacement. Half of these are functionally obsolete, and others do not have required strength For these bridges repairs and replacements are needed To avoid the high cost of rehabilitation the bridge rating must corectly report the present load-carrying capacity Rating engineers use Allowable Stress Design(ASD) Load Factor Design(LFD), and Load Resistance Factor Design(LRFD) to evaluate the bridge load carrying capacity In this paper the load rating methods are introduced and bridge load test data are collected. The reasons that make the difference between test results and analytical results are explained for each bridge load test And load rating methods are applied to real bridge. The rating factors from each method are compared.

  • PDF

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.

Overview and Analysis of New International Code of Practice for Pile Foundation

  • Yoon, Gil-Lim
    • Geotechnical Engineering
    • /
    • v.12 no.3
    • /
    • pp.73-82
    • /
    • 1996
  • Limit state design(LSD) principles employing load and resistance factor design(LRFD) are coming into use in geotechnical engineering community around the world. Current working (allowable) stress design principles are expected to be replaced by LRFH method in the near future. North America has recently adopted LRFD principles, and European community has also developed its own code called "Eurocode" based on partial safety factor design which is essentially the same as LRFD. Relevant review and analysis of new global design codes are prerequisites to adopting these codes in the Korean construction industry and in the Korean foundation design prac titre. This paper reviews geotechnical aspects of LRFD and Eurocode, and analyzes the geomaterial resistance factors in LRFD for the design of axially-loaded driven piles.

  • PDF

Optimal Design of I-type Girders in 2-Span Continuous Steel Bridges by LRFD (LRFD에 의한 연속보 주부재의 조밀 및 비조밀 단면 최적화 설계)

  • Gook, Joong-Sik;Shin, Yung-Seok
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.329-337
    • /
    • 2000
  • The Load and Resistance Factor Design(LRFD) Specification defines two sets of limiting width-to-thickness ratios. On the basis of these limiting values, steel sections are subdivided into three categories: compact, noncompact, and slender sections. In this paper, I-Type girders of a 2 span continuous steel bridge are divided into compact and non-compact sections and analyzed. In the design process, an optimization formulation was adopted and ADS, a Fortran program for Automated Design Synthesis, was used. In this study, we studied about change of the section between compact and non-compact using optimization formulation.

  • PDF

Optimal Design of Two-Span Steel Box Girder Bridges by LRFD (LRFD에 의한 2경간 강박스형교 최적화 설계)

  • 국중식;신영석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.173-180
    • /
    • 2001
  • In this study steel box girders used as main members of a two span continuous steel bridge, are optimally designed by a Load and Resistance Factor Design method(LRFD) using an numerical optimization method. The width, height, web thickness and flange thickness of the main girder are set as design variables, and light weight design is attempted by choosing the cross-sectional area as an object function. We studied the results of steel box girders and compared with those of 1-type girders. The main program is coded with C++ and connected with optimization modul ADS. which is coded with FORTRAN.

  • PDF

Evaluation of the Resistance Bias Factors to Develop LRFD for Driven Steel Pipe Piles (LRFD 설계를 위한 항타강관말뚝의 저항편향계수 산정)

  • Kwak, Kiseok;Park, Jaehyun;Choi, Yongkyu;Huh, Jungwon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5C
    • /
    • pp.343-350
    • /
    • 2006
  • The resistance bias factors for driven steel pipe piles are evaluated as a part of study to develop the LRFD(Load and Resistance Factor Design) for foundation structures in Korea. The 43 data sets of static load tests and soil property tests performed in the whole domestic area were collected and analyzed to determine the representative bearing capacities of the piles using various methods. Based on the statistical analysis of the data, the Davisson's criterion is proved to be the most reasonable method for estimation of pile bearing capacity among the methods used. The static bearing capacity formulas and the Meyerhof method using N values are applied to calculate the design bearing capacity of the piles. The resistance bias factors of the driven steel pipe piles are evaluated respectively as 0.98 and 1.46 by comparison of the bearing capacities for both of the static bearing capacity formulas and the Meyerhof method. It is also shown that uncertainty of the static bearing capacity formulas is relatively less than that of the Meyerhof method.

A Study on the two span preflex composite girder bridges with LRFD (LRFD에 의한 2경간 Preflex 합성형교에 관한 연구)

  • 구민세;박영제;오석태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.95-102
    • /
    • 1999
  • Preflex beams are prestressed by the predeflection technique, which enables the use of concrete-encased high strength steel beams where deflection or cracking of concrete, or both, would otherwise be excessive. This study presents the analysis of the two span preflex composite girder bridges with Load and Resistance Factor Design(LRFD), which is most widely used design nile in the advanced states. The results show that the comparison of LRR with Allowable Stress Design(ASD) according to span length.

  • PDF

A Case Study on the Design of Drilled Shaft on Soft Ground in Vietnam (베트남 연약지반에서의 현장타설말뚝 설계 사례)

  • Seo, Won-Seok;Cho, Sung-Han;Choi, Ki-Byung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.591-604
    • /
    • 2008
  • In this study, two design examples of drilled shafts on soft ground in Ho-Chi-Minh City, Vietnam are introduced. One is for a 27-story apartment and the other is for a Arch bridge over Saigon river. Unlikely the normal cases in Korea, all of the bored pile foundations are supposed to be placed on soil layers. Therefore, skin friction between pile and ground is the most crucial design parameter. Three methods using SPT N value of sandy soil -Korean Road Bridge Code(1996), Reese and Wright (1977), and O'Neill and Reese (1988)- were adopted to obtain an ultimate axial bearing capacity. In order to verify the calculated bearing capacity, 3 sets of static load test and a Osterberg Cell test were performed at an apartment site and a bridge site respectively. LRFD (Load Resistance Factored Design) method was compared with ASD (Allowable Stress Design) method. On application of ASD method, safety factor for skin friction was adopted as 2 or 3 while safety factor for end bearing was 3. The design bearing capacities from ASD method matched well with those from LRFD method when safety factor for skin friction was adopted as 2.

  • PDF