• Title/Summary/Keyword: load adaptive

Search Result 663, Processing Time 0.028 seconds

A Novel Asymmetrical Half-type IPM BLDC Motor Structure for Reducing Torque Ripple (토크 리플 저감을 위한 새로운 비대칭 하프-타입 영구자석 매입형 브러시리스 직류 모터 구조)

  • Sim, Yosub;Niguchi, Noboru;Hirata, Katsuhiro
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.134-143
    • /
    • 2016
  • This paper proposes a novel asymmetrical interior permanent magnet (IPM) brushless DC (BLDC) motor structure, which utilizes half-type permanent magnet (PM) configuration and has asymmetrical side gaps (slot next to the PMs) for reducing torque ripples. This structure uses 24% less volume of PMs than conventional IPM BLDC motor with a full set of magnets. The characteristics of the proposed motor are compared with three other half-type IPM BLDC motors through finite elements method (FEM) analysis, and the usefulness of the proposed motor was verified through experimental evaluation on prototypes of the conventional motor and proposed motor under various torque load conditions. This research obtained a high-performance IPM BLDC motor while decreasing manufacturing cost at the same time.

The Optimal Controller Design of Buck-Boost Converter by using Adaptive Tabu Search Algorithm Based on State-Space Averaging Model

  • Pakdeeto, Jakkrit;Chanpittayagit, Rangsan;Areerak, Kongpan;Areerak, Kongpol
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1146-1155
    • /
    • 2017
  • Normally, the artificial intelligence algorithms are widely applied to the optimal controller design. Then, it is expected that the best output performance is achieved. Unfortunately, when resulting controller parameters are implemented by using the practical devices, the output performance cannot be the best as expected. Therefore, the paper presents the optimal controller design using the combination between the state-space averaging model and the adaptive Tabu search algorithm with the new criteria as two penalty conditions to handle the mentioned problem. The buck-boost converter regulated by the cascade PI controllers is used as the example power system. The results show that the output performance is better than those from the conventional design method for both input and load variations. Moreover, it is confirmed that the reported controllers can be implemented using the realistic devices without the limitation and the stable operation is also guaranteed. The results are also validated by the simulation using the topology model of MATLAB and also experimentally verified by the testing rig.

Adaptive-Predictive Controller based on Continuous-Time Poisson-Laguerre Models for Induction Motor Speed Control Improvement

  • Boulghasoul, Z.;El Bahir, L.;Elbacha, A.;Elwarraki, E.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.908-925
    • /
    • 2014
  • Induction Motor (IM) has several desirable features for high performance adjustablespeed operation. This paper presents the design of a robust controller for vector control induction motor drive performances improvement. Proposed predictive speed controller, which is aimed to guarantee the stability of the closed loop, is based on the Poisson-Laguerre (PL) models for the association vector control drive and the induction motor; without necessity of any mechanical parameter, and requires only two control parameters to ensure implicitly the integrator effect on the steady state error, load torque disturbances rejection and anti-windup effect. In order to improve robustness, insensitivity against external disturbances and preserve desired performance, adaptive control is added with the aim to ensure an online identification of controller parameters through an online PL models identification. The proposed control is compared with the conventional approach using PI controller. Simulation with MATLAB/SIMULINK software and experimental results for a 1kW induction motor using a dSPACE system with DS1104 controller board are carried out to show the improvement performance.

An FPGA-Based Modified Adaptive PID Controller for DC/DC Buck Converters

  • Lv, Ling;Chang, Changyuan;Zhou, Zhiqi;Yuan, Yubo
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.346-355
    • /
    • 2015
  • On the basis of the conventional PID control algorithm, a modified adaptive PID (MA-PID) control algorithm is presented to improve the steady-state and dynamic performance of closed-loop systems. The proposed method has a straightforward structure without excessively increasing the complexity and cost. It can adaptively adjust the values of the control parameters ($K_p$, $K_i$ and $K_d$) by following a new control law. Simulation results show that the line transient response of the MA-PID is better than that of the adaptive digital PID because the differential coefficient $K_d$ is introduced to changes. In addition, experimental results based on a FPGA indicate that the MA-PID control algorithm reduces the recovery time by 62.5% in response to a 1V line transient, 50% in response to a 500mA load transient, and 23.6% in response to a steady-state deviation, when compared with the conventional PID control algorithm.

Optimization of safety factor by adaptive simulated annealing of composite laminate at low-velocity impact

  • Sidamar, Lamsadfa;Said, Zirmi;Said, Mamouri
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.285-295
    • /
    • 2022
  • Laminated composite plates are utilized extensively in different fields of construction and industry thanks to their advantages such as high stiffness-to-weight ratio. Additionally, they are characterized by their directional properties that permit the designer to optimize their stiffness for specific applications. This paper presents a numerical analysis and optimization study of plates made of composite subjected to low velocity impact. The main aim is to identify the optimum fiber orientations of the composite plates that resist low velocity impact load. First, a three-dimensional finite element model is built using LS DYNA computer software package to perform the impact analyses. The composite plate has been modeled using solid elements. The failure criteria of Tsai-Wu's criterion have been used to control the strength of the composite material. A good agreement has been found between the predicted numerical results and experimental results in the literature which validate the finite element model. Then, an Adaptive Simulated Annealing (ASA) has been used to optimize the response of impacted composite laminate where its objective is to maximize the safety factor by varying the ply angles. The results show that the ASA is robust in the sense that it is capable of predicting the best optimal designs.

Optimizing Energy Efficiency in Mobile Ad Hoc Networks: An Intelligent Multi-Objective Routing Approach

  • Sun Beibei
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.2
    • /
    • pp.107-114
    • /
    • 2024
  • Mobile ad hoc networks represent self-configuring networks of mobile devices that communicate without relying on a fixed infrastructure. However, traditional routing protocols in such networks encounter challenges in selecting efficient and reliable routes due to dynamic nature of these networks caused by unpredictable mobility of nodes. This often results in a failure to meet the low-delay and low-energy consumption requirements crucial for such networks. In order to overcome such challenges, our paper introduces a novel multi-objective and adaptive routing scheme based on the Q-learning reinforcement learning algorithm. The proposed routing scheme dynamically adjusts itself based on measured network states, such as traffic congestion and mobility. The proposed approach utilizes Q-learning to select routes in a decentralized manner, considering factors like energy consumption, load balancing, and the selection of stable links. We present a formulation of the multi-objective optimization problem and discuss adaptive adjustments of the Q-learning parameters to handle the dynamic nature of the network. To speed up the learning process, our scheme incorporates informative shaped rewards, providing additional guidance to the learning agents for better solutions. Implemented on the widely-used AODV routing protocol, our proposed approaches demonstrate better performance in terms of energy efficiency and improved message delivery delay, even in highly dynamic network environments, when compared to the traditional AODV. These findings show the potential of leveraging reinforcement learning for efficient routing in ad hoc networks, making the way for future advancements in the field of mobile ad hoc networking.

The design of adaptive Controller for the Voltage Bus Conditioner for the improvement of the Power Quality in the DC Power Distribution System (DC 배전시스템의 품질향상을 위한 VBC 적응제어)

  • Woo, Hyun-Min;Lee, Byung-Hun;Chang, Han-Sol;La, Jae-Du;Kim, Young-Seok
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2348-2356
    • /
    • 2011
  • In recent years, many researches for DC power distributed system (PDS) are being preformed and the importance of the DC PDS is more and more emphasized. Furthermore, in the railway system, the DC PDS is used in subway station lighting, facilities, etc. In the DC PDS, DC bus voltage instability may be occurred by the operation of multiple parallel loads such as pulsed power load, motor drive system, and constant power loads. Thus, good quality and high reliability for electric power are required and voltage bus conditioner (VBC) may be used the DC PDS. The VBC is a DC/DC converter for mitigation of the bus transients. In this paper, adaptive controller is designed. The simulation results by PSIM are presented for validating the proposed control algorithm.

  • PDF

압전변압기의 특성분석 및 적응성 제어를 위한 안정화 설계

  • Yun, Seok-Taek;Mun, Hong-Ryeol;Won, Yeong-Jin;Lee, Jin-Ho;Kim, Jin-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.233-233
    • /
    • 2009
  • Piezoelectric Transformer (PT) was emerged in device and material industry. PT has some advantages such as low profile and mechanical energy transfer with little electromagnetic interface (EMI). But, It is known that the maximum PT efficiency can be obtained when it operates near the resonant frequency of the PT. Also PT's resonant frequency moves according to the load conditions Therefore, As the operating frequency moves further from the resonant frequency, the PT efficiency decreases dramatically due to the increase of the circulating current. This paper proposes analyzes modeling of PT convert and propose a guide-line to adaptive control

  • PDF

An Adaptive Motion Estimation Algorithm Using Spatial Correlation (공간 상관성을 이용한 적응적 움직임 추정 알고리즘)

  • 박상곤;정동석
    • Proceedings of the IEEK Conference
    • /
    • 2000.06d
    • /
    • pp.43-46
    • /
    • 2000
  • In this paper, we propose a fast adaptive diamond search algorithm(FADS) for block matching motion estimation. Fast motion estimation algorithms reduce the computational complexity by using the UESA (Unimodal Error Search Assumption) that the matching error monotonically increases as the search moves away from the global minimum error. Recently many fast BMAs(Block Matching Algorithms) make use of the fact that the global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the adjacent blocks. We change the origin of search window according to the spatially adjacent motion vectors and their MAE(Mean Absolute Error). The computer simulation shows that the proposed algorithm has almost the same computational complexity with UCBDS(Unrestricted Center-Biased Diamond Search)〔1〕, but enhance PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS(Full Search), even for the large motion case, with half the computational load.

  • PDF

Levitation Control of BLSRM using Adaptive Fuzzy PID Controller (퍼지제어기 기반의 새로운 BLSRM의 축방향지지력 제어)

  • He, Yingjie;Zhang, Fengge;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.519-520
    • /
    • 2016
  • BLSRM is a nonlinear, strong coupling and multi-variable system. The conventional control method is vulnerable to uncertain factors such as the load disturbance and satellite parameters change. It is difficult to obtain satisfactory control effect. Basing on a 8/10 BLSRM, whose suspending force control is separated with the torque control, this paper presents adaptive fuzzy PID controller for levitation control, which apply the fuzzy logic control to the conventional PID controller for parameters self-tuning. Both fuzzy and parameters of PID controller are self-tuning on-line, which improve the performance of controller. Finally, simulation and experimental results show the performance of the proposed method.

  • PDF