• Title/Summary/Keyword: load/unload

Search Result 121, Processing Time 0.022 seconds

Fabrication and Experimental Research of the Disk Bump to Improve the Unloading Performance (언로드 성능 형상을 위한 디스크 범퍼의 제작 및 실험 연구)

  • Lee, Yong-Eun;Lee, Yong-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Kyung-Su;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1276-1279
    • /
    • 2007
  • The main objectives of the Load/Unload are no slider-disk contact and no media damage. But, it remains unsolved technical problems on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. Keeping in mind of these points, to prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. First, referring to the simulation results, we select the optimal bump shapes to improve unload performance by unload analysis. Second, the disk bump is mechanically manufactured by pressing disk surface using tungsten tips. The bumps are variously processed by changing pressing pressure of tungsten tips. After confirming bump shape by nano-scanner, the optimal bump shape is applied to experimental unload process. Through this experiment, it is conformed that the unload performance was improved by using the optimal disk bump to prevent the slider-disk contact.

  • PDF

Mechanical Properties of Minerals in Daejeon Granite According to Depths by Dynamic Ultra-micro Hardness (동적 초미소 경도법에 의한 심도별 대전화강암 내 광물들의 역학적 특성)

  • Choi, Junghae;Shin, Juho;Jang, Hyongdoo;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.27 no.3
    • /
    • pp.172-184
    • /
    • 2017
  • The hardness and mechanical properties of the minerals in the Daejeon granite according to depths were investigated by indentation test, load-unload test, and cycle test of dynamic ultra-micro hardness. As a result of the tests, it was possible to classify into three mineral groups (Group-1, -2, -3). The Martens hardness was not significantly different between 41 m and 223 m depths in three mode tests. Nevertheless, they showed in the order of a cycle test < load-unload test < indentation test. Considering the average Martens hardness, elastic modulus, and indentation work for each mineral group, their boundaries were relatively clear. In conclusion, A relatively accurate hardness of minerals can be obtained by three mode tests of dynamic ultra-micro hardness. In addtion, it was possible to characterize the elastic modulus and the elastic-plastic properties of the minerals from the load-unload and cycle tests.

Integrated Optimal Design for Suspension to Improve Load/unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim Ki-Hoon;Son Suk-Ho;Park Kyoung-Su;Yoon Sang-Joon;Park No-Cheol;Yang Hyun-Seok;Choi Dong-Hoon;Park Young-pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.204-209
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology far developing the small form factor hard disk drive. The main object of L/UL is no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF

Head Slider Design Using Approximation Method For Load/Unload Applications (근사화 기법을 이용한 Load/Unload 용 헤드 슬라이더 최적설계)

  • Son, Seok-Ho;Yoon, Sang-Joon;Park, No-Cheol;Park, Young-Pil;Choi, Dong-Hoon
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.3
    • /
    • pp.169-177
    • /
    • 2006
  • In this study, we present the optimization of a head slider using kriging method in order to reduce lift-off force during unloading process with satisfying reliable flying attitude in steady state. To perform an optimization process efficiently, a simplified lift-off force model, which is a function of air bearing suction force and flying attitudes, is created by kriging method. The EMDIOS, which is the process integration and design optimization software developed by iDOT, is used to automatically wrap the analysis with the optimization and efficiently implements the repetitive works between analyzer and optimizer. An optimization problem is formulated to reduce the lift-off force during unloading process while satisfying the flying attitude in reliable range over the entire recording band and reducing the probability of contact between slider and disk. The simulation result shows that the amplitude of lift-off force of optimized L/UL slider is reduced about 62%, compared with that of initial slider model. It is demonstrated by the dynamics L/UL simulation that the optimum slider incorporated with the suspension is not only smoothly loaded onto disk but also properly unloaded onto the ramp.

  • PDF

Load/unload Dynamics of Slider on Ramp for Various Ramp Shapes (램프 형상에 대한 램프 상의 로드/언로드 동특성 해석)

  • Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil;Lee, Yong-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1248-1254
    • /
    • 2005
  • L/UL(Load/unload) mechanism has been widely used in SFF(Small form factor) HDD because L/UL technology has many advantages such as an increase of areal density, reduction of power consumption and improvement of shock resistance. In this system, the most important design goal is no slider-disk contact and fast air-hearing breaking during L/UL process. To do so, we should consider many design parameters related to L/UL system. The ramp shape is the most dominant component among parameters which dramatically affect the L/UL performance. This paper makes an advanced ramp model using ANSYS/LS-DYNA. Through this FE model, this paper investigates the effect of initial ramp slope and location of air-bearing breaking. From the experiment for three different ramps, we also verify that experimental results agree with simulation results. We conclude that the ramp design should have small ramp slope at the moment which a suspension tap contacts with ramp and large ramp slope after air-bearing breaking in order to improve L/UL Performance.

An Analysis of the Economic Effects of Marine Transport and Port Industry (해운.항만산업의 경제적 파급효과 분석)

  • Jeong, Boon-Do;Shim, Jae-Hee
    • Journal of Korea Port Economic Association
    • /
    • v.27 no.3
    • /
    • pp.311-329
    • /
    • 2011
  • This study examined economic ripple effect of marine transport and port industry using Input-Output Tables. The results of the study are summarized as follows: first, in 2005 production inducement coefficients of harbour facilities was the highest(1.958), followed by coast and inland water transportation(1.857), load and unload(1.842), other transportation services(1.768), storage and warehouse(1.676), water transportation assistant services(1.422), and outport transportation (1.283). Second, value added inducement coefficient of water transportation assistant services was the highest(0.924), followed by load and unload, storage and warehouse(0.902), other transportation services(0.885), harbor facilities(0.832), coast and inland water transportation (0.752), and outport transportation(0.258). Third, import inducement coefficient of outport transportation was the highest(0.742), followed by coast and inland water transportation, harbor facilities, other transportation services, load and unload, storage and warehouse, and water transportation assistance services. Fourth, indexes of the sensitivity of dispersion of other transportation services and load and unload were 1.125 and 0.882 respectively while those of harbor facilities and outport transportation were 0.514. Indexes of power of dispersion of harbor facilities, coast and inland water transportation, load and unload, and other transportation services were the highest, respectively 1.006, 0.954, 0.946, and 0.908 while that of outport transportation was low, 0.659.

Damage Detection in Fiber Reinforced Composites Containing Electrically Conductive Phases

  • Shin, Soon-Gi;Hideaki Matsubara
    • The Korean Journal of Ceramics
    • /
    • v.6 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Fiber reinforced plastic (FRP) composites and ceramic matrix composites (CMC) which contain electrically conductive phases have been designed and fabricated to introduce the detection capability of damage/fracture detection into these materials. The composites were made electrically conductive by adding carbon and TiN particles into FRP and CMC, respectively. The resistance of the conductive FRP containing carbon particles showed almost linear response to strain and high sensitivity over a wide range of strains. After each load-unload cycle the FRP retained a residual resistance, which increased with applied maximum stress or strain. The FRP with carbon particles embedded in cement (mortar) specimens enabled micro-crack formation and propagation in the mortar to be detected in situ. The CMC materials exhibited not only sensitive response to the applied strain but also an increase in resistance with increasing number of load-unload cycles during cyclic load testing. These results show that it is possible to use these composites to detect and/or fracture in structural materials, which are required to monitor the healthiness or safety in industrial applications and public constructions.

  • PDF

Design and Analysis of Disk Bump to Improve the Unloading Performance in HDD (HDD 의 언로딩 성능 개선을 위한 디스크 범프의 설계 및 해석)

  • Lee, Yong-Eun;Lee, Yong-Hyun;Lee, Hyung-Jun;Park, No-Cheol;Park, Kyoung-Su;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.4
    • /
    • pp.183-190
    • /
    • 2007
  • In most hard disk drives that apply the ramp load/unload technology, the head is unloaded at the outer edge of the disk while the disk is rotating. During the unloading process, slider-disk contacts may occur by lift-off force and rebound of the slider. The main issue of this paper is to prevent the slider-disk contact by rebound, and we apply a disk bump to the unloading process. To do so, first, the ranges of bump dimension are determined. Second, the stability of each bump is checked by dynamic simulation. Finally, unload simulations are performed for stable bump designs. As a result of these steps, the effect of the bump design and the position for the unloading performance were investigated. As a consequence, we propose the optimal bump design to improve the unloading performance. Furthermore, we can identify to remove rebound contact by applying a bump on disk during the unloading process.

  • PDF

Design and analysis of disk bump to Improve unloading performance (언로드 성능향상을 위한 디스크 범프의 디자인 및 해석)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Kim, Ki-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.140-143
    • /
    • 2006
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance. The main issues of L/UL are no slider-disk contact and no media damage. To make sure L/UL stability, we consider many design parameters in L/UL systems. This paper is focused on disk design parameters through designing a disk bump in outer guard band(OGB). In the case of bump design on the disk, we create a bump by changing bump design parameters as like size and amplitude. From dynamic analysis, we choose optimal bump model with the highest flying height and the longest rising time. When a slider passes over a bump in dynamic system, the slider rise above bump according to bump shape. On the basis of this rising effect on the bump, we apply bump design to classical L/UL system having slider-disk contact possibility. This study is based on the simulation, we finally realize improved slider unloading performance by applying slider dynamic result on unload simulation.

  • PDF

Inertia Latch Design for Micro Optical Disk Drives (초소형 광리스크 드라이브용 관성 래치 설계)

  • 김유성;김경호;유승헌;김수경;이승엽
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.4
    • /
    • pp.287-294
    • /
    • 2004
  • Dynamic Load/unload (L/UL) mechanism is an alternative to the contact start stop (CSS) technology which eliminates striction and wear failure modes associated with CSS. Inertia latch mechanism becomes important for mobile disk drives because of non operating shock performance. Various types of latch designs have been introduced in hard disk drives to limit a rotary actuator from sudden uncontrolled motion. In this paper, a single spring inertia latch is introduced for a small form optical disk drive, which uses a rotary actuator for moving an optical pick-up. A new small inertia latch with sin91e spring is designed to ensure both feasible and small size. The shock performance of the new inertia latch is experimentally verified.