• Title/Summary/Keyword: livestock transportation

Search Result 59, Processing Time 0.023 seconds

Assessment of Livestock Infectious Diseases Exposure by Analyzing the Livestock Transport Vehicle's Trajectory Using Big Data (빅데이터 기반 가축관련 운송차량 이동경로 분석을 통한 가축전염병 노출수준 평가)

  • Jeong, Heehyeon;Hong, Jungyeol;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.19 no.6
    • /
    • pp.134-143
    • /
    • 2020
  • With the worldwide spread of African swine fever, interest in livestock epidemics is growing. Livestock transport vehicles are the main cause of the spread of livestock epidemics, but no empirical quarantine procedures and standards related to the mobility of livestock transport vehicles in South Korea. This study extracted livestock-related vehicles' trajectory by utilizing the facility visit history data from the Korea Animal Health Integrated System and the DTG (Digital Tachograph) data from the Korea Transportation Safety Authority and presented them as exposure indexes aggregating the link-time occupancy of each vehicle. As a result, a total of 274,519 livestock-related vehicle trajectories were extracted, and exposure values by link and zone were quantitatively derived. Through this study, it is expected that prior monitoring of livestock transport vehicles and the establishment of post-disaster prevention policies would be provided.

Overview of the Management Characteristics of Food (Livestock Products) Transportation Systems on International- and National-level HACCP Application (HACCP 적용을 중심으로 본 해외 식품운반 관리체계의 특징과 우리나라 축산물 유통단계 안전관리 현황 조사 연구)

  • Kim, Hyoun-Wook;Paik, Hyun-Dong;Hong, Whan-Soo;Lee, Joo-Yeon
    • Food Science of Animal Resources
    • /
    • v.29 no.4
    • /
    • pp.513-522
    • /
    • 2009
  • HACCP is a scientific and systematic program that identifies specific hazards and gives measures for their control to ensure the safety of foods. Based on the Livestock Products Processing Act, the HACCP system is now being applied to Korean livestock products since December 1997, and Korea is accelerating its application from farm to table, including in farms, slaughterhouses, livestock product industries, retail markets, and transportation. The transport of livestock and its products is one of the vulnerable sectors in terms of food safety in Korea. Meats are transported in trucks in the form of carcasses or packaged meats in boxes. Carcasses may be exposed to microbiological, physical, and chemical hazards from the environment or through cross-contamination from other meats. Poor cleaning or maintenance of vehicles and tools may also raise the exposure of carcasses to microbiological or chemical hazards. HACCP application and its acceleration in distribution, particularly in transport, is regarded as critical to the provision to consumers of ultimately safe livestock products. To achieve this goal, steady efforts to develop practical tools for HACCP application should be carried out.

A Case Study on the Actual Condition of Management and Facility Use in Livestock Feces (가축분뇨 처리 및 시설이용실태에 관한 조사연구)

  • Yoo, Duck-Ki;Kwon, Sung-Ku
    • Korean Journal of Organic Agriculture
    • /
    • v.12 no.1
    • /
    • pp.1-21
    • /
    • 2004
  • If it does not underestimata the livestock feces, it is analyzed that thc potential energy of consumption is sufficient. If consequently economic value evaluation of the livestock feces, environmentally use, the use of opportune and proper quantity, the logistics system development which connected the transportation and scattering, environmentally plan of public control facilities for livestock feces as a precondition of livestock feces consuming is been sufficient, the livestock feces problem of both farmhouse and the area which occurs excessively will be solve more economically and will be the possibility resources more efficiently as chemical fertilizer transfer.

  • PDF

A Study on Comprehensive Environmental Information System for Livestock Manure Management in Korea (가축분뇨 관리를 위한 통합환경정보시스템 발전방안)

  • Jeong, Dong-Hwan;Kim, Yongseok;Shin, Jinsoo;Rhew, Doughee;Cho, Hong-Lae;Lee, Taehwan
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.2
    • /
    • pp.183-194
    • /
    • 2013
  • The Ministry of Environment, Ministry of Agriculture, Fishery and Forestry, and Ministry of Construction, Transportation and Maritime Affairs are in charge of livestock manure management. There are national statistics regarding the livestock industry such as the National Pollution Source Survey, Livestock Statistic Survey, and Livestock-breeding Trend Survey. The current statistical data are focused on the scale of livestock breeding and the production of livestock manure using these data, but it is difficult to establish database due to lack of information. In order to plan relevant policies including management of livestock manure, the government established database systems such as the integrated information system of livestock manure, the integrated system of national infectious animal-disease prevention, and the Sae-ol public administrative system. We have tried to suggest improvements for the comprehensive environmental information system of livestock manure management by detecting problems in each level of the livestock manure life-cycle, making use of the existing systems, and considering the electronic transfer system of livestock manure. The services and functions of this comprehensive system include information of livestock farmers, the production, collection, transportation, and treatment of livestock manure, the area of agricultural land used for livestock manure, the report of approval and results on livestock manure products, management of statistical information, management of civil affairs, and relevant mobile application services. The system is made up of three processes: first, establishment of GIS-based management database of livestock manure; second, establishment of a history management system for livestock manure transactions; and third, development of a water quality assessment system.

Hub Facilities in Vehicle Movement Network between Livestock Facilities (사회연결망 분석을 통한 축산시설 차량이동 네크워크의 허브시설 도출)

  • Lee, Gyoung-Ju;Park, Son-Il;Lee, Kwang-Nyeong;Kim, Han-Yee;Park, Jin-Ho;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.137-146
    • /
    • 2018
  • The purpose of this study was to derive and analyze the hub facilities that occupy major positions in the vehicle movement networks of livestock facilities. For this purpose, this study used the KAHIS data provided by Animal and Plant Quarantine Agency. The hub facilities were derived from the degree centrality & betweenness centrality. The analysis results are summarized as follows. First, in a livestock facility's vehicle movement network, there are a small number of hub facilities with very high centrality indicator values compared to other facilities. Second, the hub facilities based on the degree centrality are the feed factory, the milk collecting center, slaughterhouse, slaughterhouse for chicken, and livestock markets. Third, the hub facilities based on the betweenness centrality are the livestock markets, the feed factory, and slaughterhouse. Fourth, hub facilities based on the degree centrality are concentrated in a particular area, but the hub facilities based on betweenness centrality are distributed relatively evenly.

Relationship Between Degree Centrality of Livestock Facilities in Vehicle Movement Network and Outbreak of Animal Infectious Disease (차량이동 네트워크에서의 축산시설 연결중심성과 가축 전염병 발생 사이의 관계)

  • Lee, Gyoung-Ju;Pak, Son-Il;Lee, Kwang-Nyeong;Kim, Han-Yee;Park, Jin-Ho;Hong, Sungjo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.353-362
    • /
    • 2018
  • The national loss caused by the periodic livestock epidemic is very large. In addition, vehicle movement is the main cause of livestock epidemics in Korea. In this context, this study analyzed the relationship between the degree centrality of livestock facilities and the outbreak of infectious diseases. For this purpose, a livestock vehicle movement network was constructed using the facility entrance data provided by KAHIS. Afterwards, the centrality index was derived for each facility in the vehicle movement network and the mean centrality index of the epidemic and non-epidemic facilities were compared. The analysis results are summarized as follows. First, the degree centrality of epidemic facilities is significantly greater than non-epidemic facilities. As a result of the analysis of the entire period data and the period-based data, in most data, the degree centrality of facilities where livestock infectious diseases occurred was significantly greater than most non-occurrence facilities. Second, in the entire period data, the difference in degree centrality between the epidemic and non-epidemic facilities was smaller for HPAI than for FMD. On the other hand, no significant difference was found in the results of the analysis according to the divided period. The policy implications of the results are as follows. First, proactive management of facilities based on centrality is needed. Second, in the case of cloven-hoofed animal facilities, it is more urgent to introduce a management policy based on the degree centrality.

Development of Predicting Model for Livestock Infectious Disease Spread Using Movement Data of Livestock Transport Vehicle (가축관련 운송차량 통행 데이터를 이용한 가축전염병 확산 예측모형 개발)

  • Kang, Woong;Hong, Jungyeol;Jeong, Heehyeon;Park, Dongjoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.78-95
    • /
    • 2022
  • The result of previous studies and epidemiological invstigations for infectious diseases epidemic in livestock have shown that trips made by livestock-related vehicles are the main cause of the spread of these epidemics. In this study, the OD traffic volume of livestock freight vehicle during the week in each zone was calculated using livestock facility visit history data and digital tachograph data. Based on this, a model for predicting the spread of infectious diseases in livestock was developed. This model was trained using zonal records of foot-and-mouth disease in Gyeonggi-do for one week in January and February 2015 and in positive, it was succesful in predicting the outcome in all out of a total 13 actual infected samples for test.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Overview of Real-time Visibility System for Food (Livestock Products) Transportation Systems on HACCP Application and Systematization (축산물 유통단계의 HACCP 적용과 체계화를 위한 실시간 관제시스템에 대한 현황)

  • Kim, Hyoun-Wook;Lee, Joo-Yeon;Hong, Wan-Soo;Hwang, Sun-Min;Lee, Victor;Rhim, Seong-Ryul;Paik, Hyun-Dong
    • Food Science of Animal Resources
    • /
    • v.30 no.6
    • /
    • pp.896-904
    • /
    • 2010
  • HACCP is a scientific and systematic program that identifies specific hazards and gives measurements in order to control them and ensure the safety of foods. Transportation of livestock and its products is one of the vulnerable sectors regarding food safety in Korea, as meats are transported by truck in the form of a carcass or packaged meat in a box. HACCP application and its acceleration of distribution, in particular transportation, are regarded as important to providing consumers with ultimately safe livestock products. To achieve this goal, practical tools for HACCP application should be developed. Supply chain management (SCM) is a holistic and strategic approach to demand, operations, procurement, and logistics process management. SCM has been beneficially applied to several industries, notably in vehicle manufacture and the retail trade. HACCP-based real-time visibility system using wireless application (WAP) of the livestock distribution is centralized management system that enables control of temperature and HACCP management in real-time for livestock transportation. Therefore, the application of HACCP to livestock distribution (transportation, storage, and sale) can be activated. Using this system, HACCP management can be made easier, and distribution of safe livestock products can be achieved.

Preservation of Simmental bull sperm at 0℃ in Tris dilution: effect of dilution ratio and long-distance transport

  • Shouqing Jiang;Fei Huang;Peng Niu;Jieru Wang;Xiaoxia He;Chunmei Han;Qinghua Gao
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.203-209
    • /
    • 2024
  • Objective: This study aimed to assess the impact of the dilution ratio of Tris diluent, storage at 0℃, and long-distance transportation on the spermatozoa of Simmental cattle. It also validated the feasibility of the regional distribution of fresh semen. Methods: In experiment 1, semen was diluted at four dilution ratios (1:6, 1:9, 1:12, and 1:15) to determine the optimal dilution ratio of Tris diluent. In experiment 2, we assessed sperm viability, progressive motility (objectively assessed by computer-assisted sperm analyzer), and acrosome intactness in Tris dilutions kept at constant 0℃ for 1, 3, 6, 9, and 12 days. We compared them to Tianshan livestock dilutions (Commercial diluent). In experiment 3, semen was diluted using Tris diluent, and sperm quality was measured before and after long-distance transport. Artificial insemination of 177 Simmental heifers compared to 156 using Tianshan Livestock dilution. Results: The outcomes demonstrated that 1:9 was the ideal Tris diluent dilution ratio. The sperm viability, Progressive Motility, and acrosome integrity of both Tris and Tianshan dilutions preserved at 0℃ gradually decreased over time. sperm viability was above 50% for both dilutions on d 9, with a flat rate of decline. The decrease in acrosome integrity rate was faster for Tianshan livestock dilutions than for Tris dilutions when stored at 0℃ for 1 to 6 days. There was no significant difference (p>0.05) in sperm viability between semen preserved in Tris diluent after long-distance transportation and semen preserved in resting condition. The conception rates for Tris dilution and Tianshan livestock dilution were 49.15% and 46.15% respectively, with no significant difference (p>0.05). Conclusion: This shows that Tris diluent is a good long-term protectant. It has been observed that fresh semen can be successfully preserved for long-distance transport when stored under 0℃ conditions. Additionally, it is feasible to distribute semen regionally.