• Title/Summary/Keyword: livestock compost

Search Result 211, Processing Time 0.038 seconds

Effects of Pig Compost and Liquid Manure on Yield, Nutrients Uptake of Rice Plant and Physicochemical Properties of Soil (돈분 퇴·액비 시용 방법이 벼 양분 흡수, 수량 및 토양물리화학성에 미치는 영향)

  • Lee, Sang-Bok;Cho, Kwang-Min;Baik, Nam-Hyun;Yang, Chang-Hyu;Jung, Je-Hyuck;Kim, Kee-Jong;Lee, Gyung-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.772-778
    • /
    • 2012
  • In order to develop the application method of compost manure (CM) and liquid manure (LM) for rice cultivation, experiments were conducted at silty loam paddy field in Gochang, Jeonbuk, a LM applied rate as N%; non-application, chemical fertilizer (CF) 100%, CM 50%+LM 50%, CM 30%+CF 70% and CM 30%+LM 70% as basal and additional fertilizer. $NH_4^+$-N content in paddy soil was higher with CF 100% application than the split application of compost and liquid pig manure fertilizer during the early stage of rice growth. However, there was no significant difference in the later part of rice growth. Amount of $NO_3^-$-N in leachate was decreased in CM 30%+LM 70% and CM 30%+CF 70% split applications compared to CF 100%. Amounts of OM and Avail $P_2O_5$, Exch. cations in soil of experiment after were highest with the split application of CM 50%+LM 50% and CM 30%+LM 70%. Amount of nutrient uptake of plants were no significant difference between the split application plots of CM and LM, but nitrogen utilization rate was 66% in average CM 50%+LM 50% and CM 30%+LM 70% to compared CF 100%. The rice yield of CM 50%+LM 50% was lower (90%) comparing that of CF 100% ($557kg\;10a^{-1}$). But the yield in CM 30%+CF 70% and CM 30%+LM 70% reached 96% in average, which did not show significant difference with that of CF 100%. Accordingly, LM 70% or CF 70% split application after CM 30% application was helpful in enhancing the physicochemical property of soil as well as reducing CF. It could be evaluated that this application in segmentation was better in productivity improvement and soil pollution reduction than the esinultaneous application of LM 100% in terms of split application in times of requirement for plants.

Distribution of Foodborne Pathogens from Garlic Chives and Its Production Environments in the Southern Part of Korea (남부지방 부추와 재배환경의 식품매개병원균의 분포)

  • Jung, Jieun;Oh, Kwang Kyo;Seo, Seung-Mi;Yang, SuIn;Jung, Kyu-Seok;Roh, Eunjung;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.5
    • /
    • pp.477-488
    • /
    • 2020
  • Recently, foodborne illness outbreaks linked to fresh produce are being increasingly reported in the United States, the EU, and Korea as well. Some of this increase may be due to improved surveillance, increase in consumption, change in consumers' habits, and complex distribution systems. Garlic chive is a green, fresh-cut vegetable consumed year-round as a nutrition-rich herb in Korea. It is also prone to contamination with foodborne pathogens during pre-harvest, as amendment with high amounts of livestock manure or compost to soil is required in its cultivation. Our aim in this study was to evaluate microbial contamination of garlic chives, garlic chives cultivation soil, compost, and irrigation water in the southern part of Korea. Samples were collected in A, B, and C regions in 2019 and 2020, and 69, 72, 27, and 40 of garlic chives, soil, compost, and irrigated water, respectively, were analyzed for the presence of sanitary indicator bacteria (total aerobic bacteria, coliforms and Escherichia coli), Bacillus cereus, Staphylococcus aureus, pathogenic E. coli, E. coli O157:H7, Listeria monocytogenes, and Salmonella spp. In A, B, and C regions, levels of total aerobic bacteria, coliform, B. cereus, and S. aureus on all samples were between 1.14 and 8.83 log CFU/g, 0.43 and 5.01 log CFU/g, 0.41 and 5.55 log CFU/g, and 1.81 and 6.27 log CFU/g, respectively. B. cereus isolated from garlic chives and environmental samples showed β-hemolysis activity. Incidence of S. aureus in garlic chive and its production environments in 2020 was different from 2019. In this study, B. cereus and S. aureus were the only pathogenic microorganisms detected in all samples. As a result, this work suggests that continuous monitoring in the production and pre-harvest environment is required to improve hthe hygiene and safety of garlic chive.

Effects of Co-digestate application on the Soil Properties, Leachate and Growth Responses of Paddy Rice (통합혐기소화액의 시용이 벼 생육 및 논토양 환경에 미치는 영향)

  • Hong, Seung-Gil;Shin, Joung-Du;Kwon, Soon-Ik;Park, Woo-Kyun;Lee, Deog-Bae;Kim, Jeong-Gyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2010
  • Livestock manures have a potential to be a valuable resource with an efficient treatment. In Korea, 42 million tons of livestock manure were generated in 2008, and 84 % of them were used for compost and liquid fertilizer production. Recently recycling of livestock manure for biogas production through anaerobic digestion is increasing, but its utilization in agriculture is still uncertified. In this study, there was applied co-digestate to the paddy for rice cultivation based on N supplement. Co-digestate was fertilizer fermented with pig slurry and food waste combined with the ratio of 70:30(v:v) in its volumetric basis. For assessing the safety of co-digestate, it was monitored the contents of co-digestate for seasonal variation, resulted in no potential harm to the soil and plant by heavy metals. The results showed that soil applied with co-digestate was increased in exchangeable potassium, copper and zinc mainly due to the high rate of pig slurry in co-digestate applied. Considering high salt content due to the combination with food waste, strict quality assurances are needed for safe application to arable land though it has valuable fertilizer nutrient. Leachate after treatment showed that the concentration of nitrate nitrogen washed out within two weeks. Considering the salt accumulation results in soil, it is highly recommended that the application rate of co-digestate should not exceed the crop fertilization rate based on N supplement. With these results, it was concluded that co-digestate could be used as an alternative fertilizer for chemical fertilizer. More study is needed for the long-term effects of co-digestate application on the soil and water environment.

Effect of Selenium Supplementation on Beef Color Stability (셀레늄 급여가 쇠고기 육색 안정성에 미치는 영향)

  • Park, B.Y.;Cho, S.H.;Seong, P.N.;Kim, J.H.;Kang, G.H.;Lee, S.H.;Kim, W.Y.;Lee, J.M.;Kim, D.H.
    • Food Science of Animal Resources
    • /
    • v.29 no.5
    • /
    • pp.627-632
    • /
    • 2009
  • The objective of this study was to investigate the supplementation effect of selenium on beef color stability. A total of 15 Hanwoo steers were divided into 3 groups and 2 groups were administered with 0.9 ppm of one of two organic-selenium products, Organic-Se and Se-SMC (Se-spent mushroom compost) for 4 mon. The third group was the control group, which was not with fed selenium during the same period. The result of this study showed that there was no significant difference in meat color between the control and treatments when Hunter $L^*$, $a^*$, $b^*$, chroma, hue and total color difference (${\Delta}E$) were measured after 30 min of blooming. When the oxymyoglobin (OxyMb) contents were measured after beef samples were ground and stored for 48 h at $20^{\circ}C$ in an incubator, they were 26.04%, 28.52% and 33.78% for the control, Organic-Se and Se-SMC after 14 d of storage and 12.65, 18.98 and 18.72 after 21 d of storage at $4^{\circ}C$, respectively (p<0.05). The control had a significantly higher metmyoglobin (MetMb) content than Organic-Se and Se-SMC (p<0.05). This result indicated that selenium supplementation was effective in preventing the oxidation of myoglobin(Mb) and production of MetMb and thus was able to maintain the purplish fresh red color of the meat.

Fertilizer and Organic Inputs Effects on CO2 and CH4 Emission from a Soil under Changing Water Regimes (토양 수분 변동 조건에서 시비 및 유기물 투입에 따른 CO2와 CH4 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2012
  • BACKGROUND: Agricultural inputs (fertilizer and organic inputs) and water conditions can influence $CH_4$ and $CO_2$ emission from agricultural soils. This study was conducted to investigate the effects of agricultural inputs (fertilizer and organic inputs) under changing water regime on $CH_4$ and $CO_2$ emission from a soil in a laboratory incubation experiment. METHODS AND RESULTS: Four treatments were laid out: control without input and three type of agricultural inputs ($(NH_4)_2SO_4$, AS; pig manure compost, PMC; hairy vetch, HV). Fertilizer and organic inputs were mixed with 25 g of soil at 2.75 mg N/25 g soil (equivalent to 110 kg N/ha) in a bottle with septum, and incubated for 60 days. During the first 30-days incubation, the soil was waterlogged (1 cm of water depth) by adding distilled water weekly, and on 30 days of incubation, excess water was discarded then incubated up to 60 days without addition of water. Based on the redox potential, water regime could be classified into wetting (1 to 30 days), transition (31 to 40 days), and drying periods (41 to 60 days). Across the entire period, $CH_4$ and $CO_2$ flux ranged from 0 to 13.8 mg $CH_4$/m/day and from 0.4~1.9 g $CO_2$/m/day, and both were relatively higher in the early wetting period and the boundary between transition and drying periods. During the entire period, % loss of C relative to the initial was highest in HV (16.4%) followed by AS (8.1%), PMC (7.5%), and control (5.4%), indicating readily decomposability of HV. Accordingly, both $CH_4$ and $CO_2$ fluxes were greatest in HV treatment. Meanwhile, the lower $CH_4$ flux in AS and PMC treatments than the control was ascribed to reduction in $CH_4$ generation due to the presence of oxidized compounds such as ${SO_4}^{2-}$, $Fe^{3+}$, $Mn^{4+}$, and ${NO_3}^-$ that compete with precursors of $CH_4$ for electrons. CONCLUSION: Green manure such as HV can replace synthetic fertilizer in terms of N input, however, it may increase $CH_4$ emission from soils. Therefore, co-application of green manure and livestock manure compost needs to be considered in order to achieve satisfactory N supply and to mitigate $CH_4$ and $CO_2$ emission.

Composting of Pig Manure Affected by Mixed Ratio of Sawdust and Rice Hull (톱밥 및 왕겨 혼합조건이 돈분 퇴비화에 미치는 영향)

  • Yun, Hong-Bae;Lee, Ye-Jin;Kim, Myung-Sook;Lee, Sang-Min;Lee, Yeoun;Lee, Yong Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1032-1036
    • /
    • 2012
  • A bulking agent is an essential material for composting of high-moisture livestock manure such as pig slurry. Sawdust has been used as the most popular bulking agent but resources are limited in Korea. In this study, the feasibility of rice hull as a bulking agent was examined for composting of solid pig manure. The solid pig manure was mixed with 15% sawdust (PM+SD15), 15% rice hull (PM+RH15), 10% sawdust and 5% rice hull (PM+SD10+RH5), and 5% sawdust and 10% rice hull (PM+SD5+RH10) based on fresh weight. These mixtures were composted for 35 days. The average temperature of the composting file for 35 days was higher in PM+SD10+RH5 and PM+SD5+RH10 than in PM+SD15 and PM+RH15. The mass loss of PM+SD10+RH5 and PM+SD5+RH10 were 36.7 and 36.4%, respectively, which were higher than that of PM+SD15 and PM+RH15. After composting, organic matter content and organic matter/nitrogen ratio in all treatments met the official standards of commercial fertilizers. We concluded that rice hull may be a good bulking agent for pig manure composting when it is used in mixture with sawdust.

The Effect of SCB(Slurry Compost ion and Biofilter) Liquid Fertilizer on Growth of Creeping Bentgrasss (저농도 SCB액비의 시용이 크리핑벤트그래스의 생육에 미치는 영향)

  • Ham, Suon-Kyu;Kim, Young-Sun;Kim, Tack-Soo;Kim, Ki-Sun;Park, Chi-Ho
    • Asian Journal of Turfgrass Science
    • /
    • v.23 no.1
    • /
    • pp.91-100
    • /
    • 2009
  • In regional nutrient quota system, livestock manure was applied as liquid fertilizer after slurry composting and biofiltration (SCB) process. This study was conducted to evaluate the effect of SCB liquid fertilizer on turfgrass growth in golf course during 6 month period from May to October in 2008. Fertilizer treatment was designed as follows; non-fertilizer (NF), control (CF; compound fertilizer), S-1 (1L SCB${\cdot}m^{-2}$) and S-2 (2L SCB${\cdot}m^{-2}$). Every treatment was arranged in a randomized complete block design with three replications. In creeping bentgrass, turf color index, chlorophyll content, and dry weight were measured. Results were as follows; A seasonal change pattern of turf grass quality in all treatment increased in April $\sim$ June and September $\sim$ October, whereas it decreased in July $\sim$ August. As compared with NF, turf color index of CF, S-1 and S-2 increased by 1.8%, 1.8%, and 3.3%, respectively and chlorophyll content by 13%, 14%, and 20%, respectively. Dry weight of CF, S-1, and S-2 was higher than that of NFl by 7.7%, 18.2%, and 18.1%, respectively. For turf color index, chlorophyll content, and dry weigh, S-2 showed the best effect, followed by S-1 and CF in creeping bentgrass. These results indicated that the SCB application improves turf growth and quality.

2011 Nitrogen Budget of South Korea Including Nitrogen Oxides in Gas Phase (기체상 질소산화물을 포함한 2011년도 대한민국 질소수지 산정)

  • Shin, Jin-Hwan;Yoo, Chae-Won;An, Sang-Woo;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.2
    • /
    • pp.75-83
    • /
    • 2014
  • The present study estimated nitrogen budget of South Korea including nitrogen oxides (NOx) in 2011. Emission sources of NOx were calculated with the higher contributors, such as vehicles, businesses, power plants, based on the IPCC and EPA reports. Moreover, nitrogen budget was separated for city, agriculture livestock and forest. Input and output were chemical fertilizer, crop uptake, fixation, irrigation, compost, leaching, volatilization, imported food, denitrification, runoff, and so on. Annual nitrogen input were 1,692,650 ton/yr and output were 837,739 ton/yr which were increased from 2010 budget. In 2011, NOx emissions by vehicles, power plants, and businesses were 308,207 ton/yr, 601,437 ton/yr, and 469,946 ton/yr, respectively. Including nitrogen oxide, total nitrogen input and output in 2011 was calculated as 5,652,366 ton/yr and 1,425,371 ton/yr, respectively.

Evaluation on Feed-Nutritional Value of Spent Mushroom(Pleurotus osteratus, Pleurotus eryngii, Flammulina velutupes) Substrates as a Roughage Source for Ruminants (느타리, 새송이 및 팽이버섯 폐배지의 반추동물 조사료원으로서의 사료 영양적 가치평가)

  • 배지선;김영일;정세형;오영균;곽완섭
    • Journal of Animal Science and Technology
    • /
    • v.48 no.2
    • /
    • pp.237-246
    • /
    • 2006
  • This study was conducted to evaluate the feed-nutritional value of spent mushroom substrates(SMS) as a roughage source for ruminants through in vitro and in situ experiments. The SMS was classified into a roughage source with high fiber(NDF 64~78%) and low protein(CP 7~11%). The chemical composition of SMS was affected mainly by the primary culture ingredient rather than mushroom species. Compared with sawdust-SMS, cotton waste-SMS contained less(P<0.05) NDF and more(P<0.05) nonfibrous carbohydrate and ash(P<0.05). In vitro DM and NDF disappearances were high in the order of corn cob-, cotton waste-, and sawdust-SMS, in situ DM, NDF and ADF disappearances at 24hr incubation also showed the same pattern with in vitro trials. Compared with sawdust-SMS, cotton waste-SMS had higher digestible fractions and lower non-digestible fractions of NDF and ADF(P<0.05), resulting in higher in situ DM and NDF disappearances(P<0.05) and higher ruminal degradability(P<0.05). Therefore, the preferential use of cotton waste-SMS to sawdust-SMS is recommended as a roughage source for ruminants.

Biomass, Nitrogen, and Phosphorus Productivities of Green Manure by Barley and Hairy Vetch Mixtures (보리와 헤어리베치 혼파재배에 따른 녹비작물 수량과 질소와 인산의 생산성)

  • Lee, Cho-Rong;Kim, Pil-Joo;Oh, Yura;Park, Choong-Bae;Park, Kwang-Lai;Nam, Hong-Sik;Park, Gi-Chun
    • Korean Journal of Organic Agriculture
    • /
    • v.26 no.4
    • /
    • pp.719-729
    • /
    • 2018
  • Green manure crops can be efficient replacements of high nutrient materials such as livestock compost, organic fertilizers, etc. in organic farming. Grass-legume mixtures or mixed cropping of legumes with non-legumes can aid in abating the shortcomings of each plant type under monoculture (i.e. legumes have low biomass yields while grasses are poor at fixing nitrogen). This study was conducted to investigate the effects of barley (B) and hairy vetch (H) mixtures on green manure yield in nutrient accumulated organic upland soils of Korea. In one cropping season, single crops of barley and hairy vetch (Barley: 160 kg/ha, Hairy vetch: 90 kg/ha) as well as mixtures of both crops at different seeding rates (B66:H33, B33: H66) were grown and the obtained results are as shown below. The biomass yield and nutrient productivities were higher in barley-hairy vetch mixture. The biomass yield and total phosphorus content were higher for the mixed crops by 78~132% and 200% respectively than those of the hairy vetch monoculture. Total nitrogen content of the mixed crops was also higher than those of the barley monoculture by 43~44%. The biomass yield (5.60 Mg/ha) and nutrient contents (87.7 kg N/ha, 23 kg $P_2O_5/ha$) were highest in the case of B66:H33 seeding rate. Accordingly, this study concludes that the barley-hairy vetch mixtures cropped at B66:H33 seeding rate is efficient in increasing green manure productivity due to complementary effects observed and the highest biomass yield and nutrient contents.