• Title/Summary/Keyword: liver-specific expression

Search Result 161, Processing Time 0.025 seconds

Tissue-Specific Splicing and Expression of Cyp1A1 in the Liver and Brain of Offspring Rats after Gestational Exposure to 2,3,7,8-Tetrachlorodibenzo-P-Dioxin

  • Lim, Hak-Seob;Lee, Chul-Won;Kim, Yong-Hoon;Joo, Woo-Hong;Yong-Kweon;Moon, Ja-Young
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2003.10b
    • /
    • pp.190-191
    • /
    • 2003
  • We investigated the effects of gestational and lactational exposures to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the differential induction of CYP1A1 in the levels of protein and gene expression in the liver and brain regions of offspring rats. For this study, pregnant Sprague Dawley rats were orally exposed to TCDD (1 or 10 ng/kg body weight/day) starting at Day 1 of gestation up to Day 20 of postpartum. (omitted)

  • PDF

Spatio-Temporal Expression Pattern of Grp 78, a Putative Hoxc8 Downstream Target Gene, During Murine Embryogenesis

  • Kang Jin Joo;Kwon Yunjeong;Lee Eun Young;Park Hyoung Woo;Yang Hye-Won;Kim Myoung Hee
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.311-318
    • /
    • 2005
  • Grp78, discovered as one of the putative target genes of Hoxc8, is a highly conserved stress protein and functions as a molecular chaperone in the endoplasmic reticulum (ER). In order to see the stage-specific expression pattern of Grp78 during development, mouse embryos from day 7.5 to 17.5 p.c. were isolated, and RT-PCR as well as in situ hybridization was performed. When RT-PCR was performed using Grp78 specific primers, periodic expression pattern was detected. And also a region-specific expression pattern was detected with a strong expression in the trunk part of day 11.5 p.c. embryo, like that of Hoxc8. When in situ hybridization was performed, Grp78 was revealed to be expressed in the endoderm, somite, neuroepithelium cells of neural tube in early embryos. In the case of late embryos, Grp78 expression was detected in the liver, segmental bronchus within cranial lobe of lung, ossification center within the cartilage primordium of rib and vertebra, submandibular gland, as well as metanephros. These expression patterns are very much similar to those of Hoxc8. Since Hoxc8 has been reported to regulate apoptosis during organogenesis, it might be possible that the apoptotic function could have been conveyed through the expression of Grp78, implying that the Grp78 is one of the Hoxc8 downstream target genes.

  • PDF

Effects of exogenous lactate administration on fat metabolism and glycogen synthesis factors in rats

  • Kyun, Sunghwan;Yoo, Choongsung;Hashimoto, Takeshi;Tomi, Hironori;Teramoto, Noboru;Kim, Jisu;Lim, Kiwon
    • Korean Journal of Exercise Nutrition
    • /
    • v.24 no.2
    • /
    • pp.1-5
    • /
    • 2020
  • [Purpose] Lactate has several beneficial roles as an energy resource and in metabolism. However, studies on the effects of oral administration of lactate on fat metabolism and glycogen synthesis are limited. Therefore, the purpose of the present study was to investigate how oral administration of lactate affects fat metabolism and glycogen synthesis factors at specific times (0, 30, 60, 120 min) after intake. [Methods] Male Sprague Dawley (SD) rats (n = 24) were divided into four groups as follows: the control group (0 min) was sacrificed immediately after oral lactate administration; the test groups were administered lactate (2 g/kg) and sacrificed after 30, 60, and 120 min. Skeletal muscle and liver mRNA expression of GLUT4, FAT/CD36, PDH, CS, PC and GYS2 was assessed using reverse transcription-polymerase chain reaction. [Results] GLUT4 and FAT/CD36 expression was significantly increased in skeletal muscle 120 min after lactate administration. PDH expression in skeletal muscle was altered at 30 and 120 min after lactate consumption, but was not significantly different compared to the control. CS, PC and GYS2 expression in liver was increased 60 min after lactate administration. [Conclusion] Our results indicate that exogenous lactate administration increases GLUT4 and FAT/CD36 expression in the muscle as well as glycogen synthase factors (PC, GYS2) in the liver after 60 min. Therefore, lactate supplementation may increase fat utilization as well as induce positive effects on glycogen synthesis in athletes.

Tissue-Specific Localization NUCB2/nesfatin-1 in the Liver and Heart of Mouse Fetus

  • Sun, Sojung;Yang, Hyunwon
    • Development and Reproduction
    • /
    • v.22 no.4
    • /
    • pp.331-339
    • /
    • 2018
  • NUCB2/nesfatin-1 is first known to be expressed in the hypothalamus while controlling appetite and energy metabolism. However, recent studies have shown that NUCB2/nesfatin-1 was expressed in the various organs as well as the hypothalamus. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the ovary, testis, pituitary gland, lung, kidney, and stomach of fetal and adult mice. However, the role of NUCB2/nesfatin-1 in mouse fetus remains unknown. Thus, the aim of this study was to investigate whether NUCB2/nestatin-1 is expressed in mouse fetus at the developmental stage in which organogenesis begins. To do this, we performed in situ hybridization (ISH) and immunohistochemistry (IHC) staining to examine the distribution of NUCB2 mRNA and nesfatin-1 protein in the mouse fetal organs during early developmental stages, especially at embryonic day (E) 10.5. As a result of ISH, NUCB2 mRNA positive signals were more frequent in the liver, but there were relatively few positive signals in heart. On the other hand, no positive signals were detected in other organs. These ISH results were validated by IHC staining and qRT-PCR analysis. Expression of nesfatin-1 protein detected by IHC staining was similar to that of NUCB2 mRNA detected by ISH in the liver and heart. In addition, the levels of NUCB2 mRNA expression analyzed by qRT-PCR were significantly increased in the liver and heart compared to other organs of the mouse fetus at E13.5, whereas its level was extensively decreased in the liver, but increased in the lung, stomach, and kidney of the mouse fetus at E17.5. These results suggest that NUCB2/nesfatin-1 may play an important role in liver and heart development and physiological functions in the developmental process of mouse fetus. Further studies are needed on the function of NUCB2/nesfatin-1, which is highly expressed in the various organs, including liver and heart during mouse development.

Tissue- and Reproductive Organ-specific Expression of Protease Nexin-1 in Sprague-Dawley Rat (흰쥐에서 단백질 분해효소 저해제, Nexin-1의 조직 및 생식기관 특이적 유전자 발현)

  • 고정재;김남근;김진규;최명진;정형민;서승염;김윤희;이현환;차광열
    • Development and Reproduction
    • /
    • v.2 no.2
    • /
    • pp.135-140
    • /
    • 1998
  • Protease Nexin-1 (PN-1) inhibits the activity of several serine proteases including thrombin, urokinase (uPA)-type plasminogen activator and trypsin. Tissue- and reproductive organ-specific mRNA levels of the PN-1 were investigated in Sprague-Dawley adult rat. PN-1 mRNA expression in rats was found in brain (forebrain, hindbrain), heart, liver, lung, ovary and oviduct. The level of PN-1 mRNA in male and female among the tissues was the highest in forebrain of the female. PN-1 expression in reproductive organs was found only in ovary and oviduct. These results suggest that PN-1 expression is dependent on the sex and may be related to folliculogenesis and early embryogenesis.

  • PDF

Molecular Cloning and Tissue-specific Expression of the Melanocortin 4 Receptor Gene from Olive Flounder, Paralichthys olivaceus

  • Lee, Hye-Jung;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • G protein-coupled receptors (GPCR) constitute the largest superfamily of cell membrane receptors, mediating diverse signal-transduction pathways. The melanocortin 4 receptor (MC4R) has been of interest for its physiological role and size, one of the smallest among the GPCRs, which makes it a good model system for the structural study of GPCRs. To study the molecular structure and tissue-specific expression of MC4R in olive flounder (Paralichthys olivaceus), the full-length MC4R gene was obtained using PCR amplification of genomic DNA as well as cDNA synthesis. Sequence analysis of the gene indicates that 978 bp of the MC4R gene encodes 325 amino acids without introns. Sequence alignment with the MC4Rs from other fish shows the highest degree of identity (96%) between Paralichthys olivaceous and Verasper moseri, followed by Takifugu rubripes and Tetraodon nigroviridis (89%). RNA was isolated from various tissues to examine the tissue distribution of MC4R by using RT-PCR. The results showed major expression of MC4R in the liver, brain, and eye, which is consistent with the expression pattern in other fish belonging to the order Pleuronectiformes.

Sex-Biased Molecular Signature for Overall Survival of Liver Cancer Patients

  • Kim, Sun Young;Song, Hye Kyung;Lee, Suk Kyeong;Kim, Sang Geon;Woo, Hyun Goo;Yang, Jieun;Noh, Hyun-Jin;Kim, You-Sun;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.491-502
    • /
    • 2020
  • Sex/gender disparity has been shown in the incidence and prognosis of many types of diseases, probably due to differences in genes, physiological conditions such as hormones, and lifestyle between the sexes. The mortality and survival rates of many cancers, especially liver cancer, differ between men and women. Due to the pronounced sex/gender disparity, considering sex/gender may be necessary for the diagnosis and treatment of liver cancer. By analyzing research articles through a PubMed literature search, the present review identified 12 genes which showed practical relevance to cancer and sex disparities. Among the 12 sex-specific genes, 7 genes (BAP1, CTNNB1, FOXA1, GSTO1, GSTP1, IL6, and SRPK1) showed sex-biased function in liver cancer. Here we summarized previous findings of cancer molecular signature including our own analysis, and showed that sex-biased molecular signature CTNNB1High, IL6High, RHOAHigh and GLIPR1Low may serve as a female-specific index for prediction and evaluation of OS in liver cancer patients. This review suggests a potential implication of sex-biased molecular signature in liver cancer, providing a useful information on diagnosis and prediction of disease progression based on gender.

Expression Analysis of Interferon-Stimulated Gene 15 in the Rock Bream Oplegnathus fasciatus against Rock Bream Iridovirus (RSIV) Challenge

  • Kim, Kyung-Hee;Yang, In Jung;Kim, Woo-Jin;Park, Choul-Ji;Park, Jong-Won;Noh, Gyeong Eon;Lee, Seunghyung;Lee, Young Mee;Hwang, Hyung Kyu;Kim, Hyun Chul
    • Development and Reproduction
    • /
    • v.21 no.4
    • /
    • pp.371-378
    • /
    • 2017
  • Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.

Free fatty acid-induced histone acetyltransferase activity accelerates lipid accumulation in HepG2 cells

  • Chung, Sangwon;Hwang, Jin-Taek;Park, Jae Ho;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.13 no.3
    • /
    • pp.196-204
    • /
    • 2019
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a common metabolic disease triggered by epigenetic alterations, including lysine acetylation at histone or non-histone proteins, affecting the stability or transcription of lipogenic genes. Although various natural dietary compounds have anti-lipogenic effects, their effects on the acetylation status and lipid metabolism in the liver have not been thoroughly investigated. MATERIALS/METHODS: Following oleic-palmitic acid (OPA)-induced lipid accumulation in HepG2 cells, the acetylation status of histone and non-histone proteins, HAT activity, and mRNA expression of representative lipogenic genes, including $PPAR{\gamma}$, SREBP-1c, ACLY, and FASN, were evaluated. Furthermore, correlations between lipid accumulation and HAT activity for 22 representative natural food extracts (NExs) were evaluated. RESULTS: Non-histone protein acetylation increased following OPA treatment and the acetylation of histones H3K9, H4K8, and H4K16 was accelerated, accompanied by an increase in HAT activity. OPA-induced increases in the mRNA expression of lipogenic genes were down-regulated by C-646, a p300/CBP-specific inhibitor. Finally, we detected a positive correlation between HAT activity and lipid accumulation (Pearson's correlation coefficient = 0.604) using 22 NExs. CONCLUSIONS: Our results suggest that NExs have novel applications as nutraceutical agents with HAT inhibitor activity for the prevention and treatment of NAFLD.

Molecular Cloning, Characterization, and Expression Analysis of Chicken Δ-6 Desaturase

  • Kang, Xiangtao;Bai, Yichun;Sun, Guirong;Huang, Yanqun;Chen, Qixin;Han, Ruili;Li, Guoxi;Li, Fadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.1
    • /
    • pp.116-121
    • /
    • 2010
  • Long-chain polyunsaturated fatty acids (LC-PUFA) promote the development of brain and vision of the fetus, relieve inflammation, inhibit oral dysplasia of rumor cell, decrease the incidence of cardiovascular disease and regulate arrhythmia. ${\Delta}-6$ desaturase is the rate-limited enzyme in the desaturation process. This study reports the cloning, characterization and tissue expression of a ${\Delta}-6$ desaturase gene in the chicken. PCR primers were designed based on the predicted sequence of chicken ${\Delta}-6$ desaturase (accession number: XM421053) and used to isolate a cDNA fragment of 1,323 bp from chicken liver. Based on the 1,323 bp fragment an EST (BI390105) was obtained by BLAST. The EST and 5'nd of the 1,323 bp fragment were partially overlapped. Gene specific primers derived from the EST were used for amplification of the 5'nd. Another gene-specific primer derived from the 1,323 bp fragment was used for amplification of the 3'nd by 3'ACE. Then the three overlapping cDNA sequences obtained were assembled with DNAMAN software and a full-length ${\Delta}-6$ desaturase of 2,153 bp was obtained. The full-length cDNA contained an ORF of 1,335 bp with a 5'ntranslated region of 147 nucleotides followed by an ATG initiation codon. Stop codon TGA was at position 1,481-1,483 bp. The deduced amino acids shared an homology above 77% with bovine, mice, orangutan, rat and human. The protein sequence had three histidine-rich regions HDFGH (HisI region), HFQHH (HisII region) and HH (HisIII region), a cytochrome $b_{5}$-like domain containing a heme-binding motif and two transmembrane domains. Sequence analysis of the chicken genomic DNA revealed that the coding sequence of chicken ${\Delta}-6$ desaturase included 12 exons and 11 introns. Semi-quantitative RT-PCR showed that the ${\Delta}-6$ desaturase expression levels were in turn liver, spleen, pancreas, lung, breast muscle, heart, and abdominal fat. The expression of ${\Delta}-6$ desaturase in liver was significantly higher than that in breast muscle (p<0.01). The expression of ${\Delta}-6$ desaturase in lung was significantly higher than that in abdominal fat (p<0.01). This is the first clone of chicken ${\Delta}-6$ desaturase.