• Title/Summary/Keyword: liver volume

Search Result 280, Processing Time 0.023 seconds

Comparison Analysis of Donor Liver Volumes Estimated with 3D Magnetic Resonance and 3D Computed Tomography Image Data

  • Kim, Myeong-Seong;Park, Kyeong-Seok;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.261-265
    • /
    • 2014
  • Three-dimensional computed tomography is an effective tool to estimate the liver volume of living donors for the live liver transplantation. When additional operation is required, magnetic resonance imaging is conducted to determine the safety of the donor. This study compared the accuracy of magnetic resonance imaging and computed tomography in estimating 3D liver volume of 23 male and 7 female donors who underwent both magnetic resonance imaging and computed tomography tests before the transplantation. The analysis was conducted to see whether the liver's estimated total volumes and the left lobe volumes obtained from 3D-magnetic resonance imaging and 3D-computed tomography were identical. Volumes of the right lobe estimated with 3D-magnetic resonance imaging and 3D-computed tomography were compared with the actual volume of the right lobe harvested in the operating room because the volume of the right lobe is an important determinant in the safety of the donor. The total volume of the liver estimated from 3D-magnetic resonance imaging and 3D-computed tomography differed (1238.1904 units and 1402.364 units respectively). The left lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography also differed (450.530 units and 554.490 units, respectively). The right lobe volume of the liver estimated with 3D-magnetic resonance imaging and 3D-computed tomography were 787.660 units and 847.545 units, respectively, while the actual average right lobe volume of the harvested liver was 678.636 units. 3D-computed tomography has been widely used to estimate the right lobe volume of the donors' liver. However, 3D-magnetic resonance imaging was also very effective in estimating the volume of the liver. Thus, 3D-magnetic resonance imaging is also expected to become an important tool in determining the safety of the donors before transplantation.

Prognostic and predictive value of liver volume in colorectal cancer patients with unresectable liver metastases

  • Park, Jun Su;Park, Hee Chul;Choi, Doo Ho;Park, Won;Yu, Jeong Il;Park, Young Suk;Kang, Won Ki;Park, Joon Oh
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.77-83
    • /
    • 2014
  • Purpose: To determine the prognostic and predictive value of liver volume in colorectal cancer patients with unresectable liver metastases. Materials and Methods: Sixteen patients received whole liver radiotherapy (WLRT) between January 1997 and June 2013. A total dose of 21 Gy was delivered in 7 fractions. Results: The median survival time after WLRT was 9 weeks. In univariate analysis, performance status, serum albumin and total bilirubin level, liver volume and extrahepatic metastases were associated with survival. The mean liver volume was significantly different between subgroups with and without pain relief (3,097 and 4,739 mL, respectively; p = 0.002). Conclusion: A larger liver volume is a poor prognostic factor for survival and also a negative predictive factor for response to WLRT. If patients who are referred for WLRT have large liver volume, they should be informed of the poor prognosis and should be closely observed during and after WLRT.

Evaluation of Automatic Image Segmentation for 3D Volume Measurement of Liver and Spleen Based on 3D Region-growing Algorithm using Animal Phantom (간과 비장의 체적을 구하기 위한 3차원 영역 확장 기반 자동 영상 분할 알고리즘의 동물팬텀을 이용한 성능검증)

  • Kim, Jin-Sung;Cho, June-Sik;Shin, Kyung-Sook;Kim, Jin-Hwan;Jeon, Ho-Sang;Cho, Gyu-Seong
    • Progress in Medical Physics
    • /
    • v.19 no.3
    • /
    • pp.178-185
    • /
    • 2008
  • Living donor liver transplantation is increasingly performed as an alternative to cadaveric transplantation. Preoperative screening of the donor candidates is very important. The quality, size, and vascular and biliary anatomy of the liver are best assessed with magnetic resonance (MR) imaging or computed tomography (CT). In particular, the volume of the potential graft must be measured to ensure sufficient liver function after surgery. Preoperative liver segmentation has proved useful for measuring the graft volume before living donor liver transplantations in previous studies. In these studies, the liver segments were manually delineated on each image section. The delineated areas were multiplied by the section thickness to obtain volumes and summed to obtain the total volume of the liver segments. This process is tedious and time consuming. To compensate for this problem, automatic segmentation techniques have been proposed with multiplanar CT images. These methods involve the use of sequences of thresholding, morphologic operations (ie, mathematic operations, such as image dilation, erosion, opening, and closing, that are based on shape), and 3D region growing methods. These techniques are complex but require a few computation times. We made a phantom for volume measurement with pig and evaluated actual volume of spleen and liver of phantom. The results represent that our semiautomatic volume measurement algorithm shows a good accuracy and repeatability with actual volume of phantom and possibility for clinical use to assist physician as a measuring tool.

  • PDF

Measurement of Liver Volume by Emission Computed Tomography (SPECT를 이용한 간용적의 측정)

  • Yoo, H.S.;Lee, J.T.;Park, C.Y.;Woo, K.B.;Paik, N.C.;Shin, D.H.;Joo, K.W.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.17 no.1
    • /
    • pp.55-62
    • /
    • 1983
  • In 16 volunteers without clinical or laboratory evidence of liver disease, liver volume was determined using single-photon emission computed tomography(ECT). This technique provided excellent object contrast between the liver and its surroundings and permitted calculation of liver volume without geometric assumptions about the liver's configuration. Reproducibility of results was satisfactory, with a root-me an-square error of less than 2% between duplicate measurements in 16 individuals. The volume measurements were validated by the use of phantoms.

  • PDF

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • v.23 no.7
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

Clinical Utility of Liver Stiffness Measurements on Magnetic Resonance Elastrography in Patients with Hepatocellular Carcinoma Treated with Radiofrequency Ablation

  • Kim, Ji Eun;Lee, Jeong Min;Lee, Dong Ho;Chang, Won;Yoon, Jeong Hee;Han, Joon Goo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.4
    • /
    • pp.231-240
    • /
    • 2016
  • Purpose: To determine whether liver stiffness (LS) measured by magnetic resonance elastography (MRE) can predict the outcome of radiofrequency ablation (RFA) in hepatocellular carcinoma (HCC) patients. Materials and Methods: A total of 107 patients with Child-Pugh class A liver function who were treated with RFA for single HCC and who had undergone a gradient-echo MRE within 6 months before RFA were included. We evaluated the relationship between the LS values and the ablation volume, local tumor progression (LTP), and intrahepatic distant recurrence (IDR). We also constructed receiver operating characteristic (ROC) curves to examine the role of LS in predicting liver function deterioration, which was defined as an increase of Child-Pugh score by one point or more at 1 year after RFA. Results: There was no significant correlation between LS and ablation volume, and neither time to LTP nor IDR was associated with LS. Among the 66 patients who did not have recurrence 1 year after RFA, 5 patients (7.6%) developed liver function deterioration. A high LS value was significantly associated with development of liver function deterioration after RFA and the area under the ROC curve was 0.764 (95% CI 0.598-0.929, P = 0.003). Conclusion: LS measured by MRE could not predict ablation volume and tumor recurrence. However, high LS values were significantly associated with development of liver function deterioration.

Gastrointestinal Tissue Blood Volume Affected by Venous Pressure Change (실혈 후 및 혈압상승 후의 소화기 조직 혈액량 및 산소 섭취량 -제 1 편 정맥혈압과 소화기 조직 혈액량-)

  • Yoon, Byong-Hak;Nam, Kee-Yong
    • The Korean Journal of Physiology
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 1968
  • Changes in gastrointestinal tissue blood volume induced by variations of venous pressure between 6 and 40 mmHg were studied in 32 rabbits. Venous pressure lowering was produced by withdrawal of appropriate volume of blood and venous pressure elevation was obtained by partial occlusion of intra-thoracic vena cava inferior. Estimation of regional tissue blood volume was performed by means of regional distribution of injected $Cr^{51}-labeled$ red blood cells. The following results were obtained. 1. At the normal control venous pressure value of 18 mmHg, spleen showed the highest value of tissue blood volume expressed on weight basis, namely, $111{\mu}l/gm$, Liver tissue blood volume was $95\;{\mu}l/gm$, small intestine 24 and stomach $21\;{\mu}l/gm$, respectively. 2. Linear relationships were observed between venous pressure change and gastrointestinal tissue blood volume. The coefficients of correlation were: in spleen r=0.723; in liver r=0.791; in stomach r=0.704, respectively. In small intestine the relationship was less clear and r=0.358. Tissue blood volume of extrabdominal tissue, such as M. gastrocnemius was not influenced by venous pressure change. 3. The highest change in tissue blood volume expressed on weight basis was observed in spleen. The liver tissue showed the next highest change. Change in total tissue blood volume, however, was greatest in liver and next greatest in small intestine. This was interpreted by the fact that total weight of these two organs was much greater than that of spleen. 4. The mechanism that the change in tissue blood volume lies in the venous system which has a great compliance was discussed.

  • PDF

Automatic Liver Segmentation on Abdominal Contrast-enhanced CT Images for the Pre-surgery Planning of Living Donor Liver Transplantation

  • Jang, Yujin;Hong, Helen;Chung, Jin Wook
    • Journal of International Society for Simulation Surgery
    • /
    • v.1 no.1
    • /
    • pp.37-40
    • /
    • 2014
  • Purpose For living donor liver transplantation, liver segmentation is difficult due to the variability of its shape across patients and similarity of the density of neighbor organs such as heart, stomach, kidney, and spleen. In this paper, we propose an automatic segmentation of the liver using multi-planar anatomy and deformable surface model in portal phase of abdominal contrast-enhanced CT images. Method Our method is composed of four main steps. First, the optimal liver volume is extracted by positional information of pelvis and rib and by separating lungs and heart from CT images. Second, anisotropic diffusing filtering and adaptive thresholding are used to segment the initial liver volume. Third, morphological opening and connected component labeling are applied to multiple planes for removing neighbor organs. Finally, deformable surface model and probability summation map are performed to refine a posterior liver surface and missing left robe in previous step. Results All experimental datasets were acquired on ten living donors using a SIEMENS CT system. Each image had a matrix size of $512{\times}512$ pixels with in-plane resolutions ranging from 0.54 to 0.70 mm. The slice spacing was 2.0 mm and the number of images per scan ranged from 136 to 229. For accuracy evaluation, the average symmetric surface distance (ASD) and the volume overlap error (VE) between automatic segmentation and manual segmentation by two radiologists are calculated. The ASD was $0.26{\pm}0.12mm$ for manual1 versus automatic and $0.24{\pm}0.09mm$ for manual2 versus automatic while that of inter-radiologists was $0.23{\pm}0.05mm$. The VE was $0.86{\pm}0.45%$ for manual1 versus automatic and $0.73{\pm}0.33%$ for manaual2 versus automatic while that of inter-radiologist was $0.76{\pm}0.21%$. Conclusion Our method can be used for the liver volumetry for the pre-surgery planning of living donor liver transplantation.

Changes of the liver volume and the Child-Pugh score after high dose hypofractionated radiotherapy in patients with small hepatocellular carcinoma

  • Kim, Young Il;Park, Hee Chul;Lim, Do Hoon;Park, Hyo Jung;Kang, Sang Won;Park, Su Yeon;Kim, Jin Sung;Han, Youngyih;Paik, Seung Woon
    • Radiation Oncology Journal
    • /
    • v.30 no.4
    • /
    • pp.189-196
    • /
    • 2012
  • Purpose: To investigate the safety of high dose hypofractionated radiotherapy (RT) in patients with small hepatocellular carcinoma (HCC) in terms of liver volumetric changes and clinical liver function. Materials and Methods: We retrospectively reviewed 16 patients with small HCC who were treated with high dose hypofractionated RT between 2006 and 2009. The serial changes of the liver volumetric parameter were analyzed from pre-RT and follow-up (FU) computed tomography (CT) scans. We estimated linear time trends of whole liver volume using a linear mixed model. The serial changes of the Child-Pugh (CP) scores were also analyzed in relation to the volumetric changes. Results: Mean pre-RT volume of entire liver was 1,192.2 mL (range, 502.6 to 1,310.2 mL) and mean clinical target volume was 14.7 mL (range, 1.56 to 70.07 mL). Fourteen (87.5%) patients had 4 FU CT sets and 2 (12.5%) patients had 3 FU CT sets. Mean interval between FU CT acquisition was 2.5 months. After considering age, gender and the irradiated liver volume as a fixed effects, the mixed model analysis confirmed that the change in liver volume is not significant throughout the time course of FU periods. Majority of patients had a CP score change less than 2 except in 1 patient who had CP score change more than 3. Conclusion: The high dose hypofractionated RT for small HCC is relatively safe and feasible in terms of liver volumetric changes and clinical liver function.

Mitigating Effect of Resveratrol on the Structural Changes of Mice Liver and Kidney Induced by Cadmium; A Stereological Study

  • Rafati, Ali;Hoseini, Leila;Babai, Ali;Noorafshan, Ali;Haghbin, Hossein;Karbalay-Doust, Saied
    • Preventive Nutrition and Food Science
    • /
    • v.20 no.4
    • /
    • pp.266-275
    • /
    • 2015
  • Exposure to cadmium (Cd) has harmful effects on the liver and kidney. Resveratrol (RES) is an herbal substance that functions as a protective mediator. This study aimed to investigate the effects of RES on the histology of liver and kidney in Cd-exposed mice. Male mice were divided into 4 groups daily receiving normal saline (1 mL normal saline/d), Cd (1 mg/kg/d), RES (20 mg/kg/d), and Cd plus RES, respectively. After 4 weeks, the liver and kidney components were evaluated using stereological methods. The total volume and number of hepatocytes, and volume of fibrous tissue were respectively increased by 34%, 58%, and a 3-fold in the Cd-exposed mice in comparison to the control animals (P<0.03). On the other hand, the volume of the main vasculature (sinusoids and central veins) was decreased by 36% in the Cd group compared to the control mice (P<0.03). Considering the kidney, the results showed a 3-fold increase in the total glomeruli volume and a 7-fold increase in fibrous tissue in the Cd-treated group compared to the control mice (P<0.03). After Cd treatment, a 32% reduction was observed in the volume and length of the proximal and distal convoluted tubules. RES-treatment alone did not induce any structural changes. In comparison to the Cd group, an increase in the normal components of the liver and kidney and a decrease in the formation of the fibrous and degenerated tissues were observed in the Cd+RES-treated mice (P<0.03).