• 제목/요약/키워드: liver segmentation

검색결과 48건 처리시간 0.026초

복부 컴퓨터단층촬영 영상에서 다중 아틀라스 기반 위치적 정보를 사용한 계층적 장기 분할 (Hierarchical Organ Segmentation using Location Information based on Multi-atlas in Abdominal CT Images)

  • 김현진;김현아;이한상;홍헬렌
    • 한국멀티미디어학회논문지
    • /
    • 제19권12호
    • /
    • pp.1960-1969
    • /
    • 2016
  • In this paper, we propose an automatic hierarchical organ segmentation method on abdominal CT images. First, similar atlases are selected using bone-based similarity registration and similarity of liver, kidney, and pancreas area. Second, each abdominal organ is roughly segmented using image-based similarity registration and intensity-based locally weighted voting. Finally, the segmented abdominal organ is refined using mask-based affine registration and intensity-based locally weighted voting. Especially, gallbladder and pancreas are hierarchically refined using location information of neighbor organs such as liver, left kidney and spleen. Our method was tested on a dataset of 12 portal-venous phase CT data. The average DSC of total organs was $90.47{\pm}1.70%$. Our method can be used for patient-specific abdominal organ segmentation for rehearsal of laparoscopic surgery.

Deep Learning-Based Assessment of Functional Liver Capacity Using Gadoxetic Acid-Enhanced Hepatobiliary Phase MRI

  • Hyo Jung Park;Jee Seok Yoon;Seung Soo Lee;Heung-Il Suk;Bumwoo Park;Yu Sub Sung;Seung Baek Hong;Hwaseong Ryu
    • Korean Journal of Radiology
    • /
    • 제23권7호
    • /
    • pp.720-731
    • /
    • 2022
  • Objective: We aimed to develop and test a deep learning algorithm (DLA) for fully automated measurement of the volume and signal intensity (SI) of the liver and spleen using gadoxetic acid-enhanced hepatobiliary phase (HBP)-magnetic resonance imaging (MRI) and to evaluate the clinical utility of DLA-assisted assessment of functional liver capacity. Materials and Methods: The DLA was developed using HBP-MRI data from 1014 patients. Using an independent test dataset (110 internal and 90 external MRI data), the segmentation performance of the DLA was measured using the Dice similarity score (DSS), and the agreement between the DLA and the ground truth for the volume and SI measurements was assessed with a Bland-Altman 95% limit of agreement (LOA). In 276 separate patients (male:female, 191:85; mean age ± standard deviation, 40 ± 15 years) who underwent hepatic resection, we evaluated the correlations between various DLA-based MRI indices, including liver volume normalized by body surface area (LVBSA), liver-to-spleen SI ratio (LSSR), MRI parameter-adjusted LSSR (aLSSR), LSSR × LVBSA, and aLSSR × LVBSA, and the indocyanine green retention rate at 15 minutes (ICG-R15), and determined the diagnostic performance of the DLA-based MRI indices to detect ICG-R15 ≥ 20%. Results: In the test dataset, the mean DSS was 0.977 for liver segmentation and 0.946 for spleen segmentation. The Bland-Altman 95% LOAs were 0.08% ± 3.70% for the liver volume, 0.20% ± 7.89% for the spleen volume, -0.02% ± 1.28% for the liver SI, and -0.01% ± 1.70% for the spleen SI. Among DLA-based MRI indices, aLSSR × LVBSA showed the strongest correlation with ICG-R15 (r = -0.54, p < 0.001), with area under receiver operating characteristic curve of 0.932 (95% confidence interval, 0.895-0.959) to diagnose ICG-R15 ≥ 20%. Conclusion: Our DLA can accurately measure the volume and SI of the liver and spleen and may be useful for assessing functional liver capacity using gadoxetic acid-enhanced HBP-MRI.

3차원 CT 영상을 위한 자동 :Segmentation 기법 (A Method of Automatic Segmentation in 3-Dimensional CT image)

  • 성원;김재평;박종원
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.634-637
    • /
    • 2002
  • 오늘날 CT나 MR등을 통한 의학 영상 기술과 컴퓨터 성능의 향상으로 인체 내부 장기의 영상을 비교적 용이하게 얻을 수 있으며 얻어진 영상 정보는 컴퓨터로 수치와 되므로 데이터의 조작 및 가공이 용이하다. 그러나, 이 데이터는 2D 슬라이스들의 연속으로 표현되므로 이것을 보다 편리하게 가시화. 조작, 분석이 용이한 상태로 바꾸기 위해서는 3차원 구조로의 재구성이 필요하게 된다. 이것을 위하여 무엇보다도 먼저 CT나 MR을 통하여 얻어진 영상을 분석하여 특정 장기의 영상 부분를 다른 조직의 영상부분으로부터 분리(segmentation)할 필요가 있다. 이러한 Segmentation방법에는 여러가지가 있는데, 수작업의 결합 등으로 인해서 비효율적인 문제점을 가지고 있다. 이에 본 논문은 보다 효율적인 segmentation의 처리를 위하여 region-based 기법을 응용하여 새로운 segmentation 방법을 개발하였다. 그리하여, 본 논문이 제안한 알고리즘을 슬라이스 간격이 큰 2차원 복부 CT 영상에 적용시켜 간(liver)의 추출을 시도하였고 향상된 성능을 확인할 수 있었다.

  • PDF

복부 MDCT 영상으로부터 간혈관 자동 추출 알고리즘 (Auto-Segmentation Algorithm For Liver-Vessel From Abdominal MDCT Image)

  • 박성미;이유진;박종원
    • 한국멀티미디어학회논문지
    • /
    • 제13권3호
    • /
    • pp.430-437
    • /
    • 2010
  • 간이식 수술을 함에 있어서 간 내부의 혈관의 형태를 알고 시작하는 것이 수술의 성공률을 매우 높일 수 있다. 본 논문은 조영제를 투여한 정상 환자의 복부 MDCT를 이용하여 얻어진 영상을 다른 여러 장기부분은 제거하고 간 영상만을 추출한 후 간 내의 혈관들의 기본형태를 파악하여 몇몇 구조단위들을 만들고 Morphological filtering을 이용하여 주요 혈관인 좌, 우, 중간정맥을 찾아낸다. 중간정맥을 기준으로 간 실질을 절단하여 절단된 부분의 크기를 예측하고 수술전에 전체 상황을 파악하기 위한 연구이다. 간의 추출 방법은 명암값의 범위와 분포 샘플링 과정에 의한 명암값 분포비율을 가지고 배경과 근육층을 제거하였다. 간의 대략적인 위치 정보와 몸통의 위치정보를 이용하여 단위 매쉬영상과 일치되는 영상을 찾은 후 결과 영상을 조합하고 8방향 연결성을 이용하여 확장하고 화소간의 채우기 과정을 거쳐 최종적인 간영상을 추출하였다. 추출된 간 영상에서 간 영역의 특징적인 명암값과 다양한 구조단위를 가지고 Morpological Filtering을 수행 한 후 나타난 결과들을 조합하여 만들어진 영상에서 각 슬라이스 별로 크기순으로 큰 부분들을 남겨두어 굵은 혈관만을 추출하였다. 추출된 영상들을 3D로 구성 시 자연스럽게 보여지도록 인터폴레이션을 수행한 후 3D Reconstruction 을 수행하여 3D 형태의 간 혈관을 보고 중간 정맥을 파악하여 간 실질의 절단 위치를 예측하게 된다. 절단되어진 간 실질의 크기를 확인하고 계산에 의하여 수술 성공 가능성을 파악할 수 있다.

딥러닝을 이용한 CT 영상에서 생체 공여자의 간 절제율 및 재생률 측정 (Measurements of the Hepatectomy Rate and Regeneration Rate Using Deep Learning in CT Scan of Living Donors)

  • 문새별;김영재;이원석;김광기
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권6호
    • /
    • pp.434-440
    • /
    • 2022
  • Liver transplantation is a critical used treatment method for patients with end-stage liver disease. The number of cases of living donor liver transplantation is increasing due to the imbalance in needs and supplies for brain-dead organ donation. As a result, the importance of the accuracy of the donor's suitability evaluation is also increasing rapidly. To measure the donor's liver volume accurately is the most important, that is absolutely necessary for the recipient's postoperative progress and the donor's safety. Therefore, we propose liver segmentation in abdominal CT images from pre-operation, POD 7, and POD 63 with a two-dimensional U-Net. In addition, we introduce an algorithm to measure the volume of the segmented liver and measure the hepatectomy rate and regeneration rate of pre-operation, POD 7, and POD 63. The performance for the learning model shows the best results in the images from pre-operation. Each dataset from pre-operation, POD 7, and POD 63 has the DSC of 94.55 ± 9.24%, 88.40 ± 18.01%, and 90.64 ± 14.35%. The mean of the measured liver volumes by trained model are 1423.44 ± 270.17 ml in pre-operation, 842.99 ± 190.95 ml in POD 7, and 1048.32 ± 201.02 ml in POD 63. The donor's hepatectomy rate is an average of 39.68 ± 13.06%, and the regeneration rate in POD 63 is an average of 14.78 ± 14.07%.

구역 확장을 응용한 의학 영상 자동 분리 알고리즘 (An Algorithm of Automatic Segmentation by Region Growing)

  • 성원;박종원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 춘계학술발표논문집 (상)
    • /
    • pp.763-766
    • /
    • 2002
  • 오늘날 CT나 MR 등을 통한 의학 영상 기술과 컴퓨터 성능의 향상으로 인체 내부 장기의 영상을 비교적 용이하게 얻을 수 있으며 얻어진 영상 정보는 컴퓨터로 수치화되므로 데이터의 조작 및 가공 또한 용이하다. 그러나, 이 데이터는 2D 슬라이스(slice)들의 연속으로 표현되므로 이것을 보다 가시화, 조작, 분석이 용이한 상태로 바꾸기 위해서는 3 차원 구조로의 재구성이 필요하게 된다. 이것을 위하여 무엇보다도 먼저 CT 나 MR 을 통하여 얻어진 영상을 분석하여 특정장기(organ)의 영상 부분을 다른 조직의 영상부분으로부터 분리(segmentation)할 필요가 있다. 이러한 Segmentation방법에는 여러가지가 있는데, 수작업의 결합 등으로 인해서 비효율적일 수 밖에 없는 문제점을 가지고 있다. 이에 본 논문은 보다 효율적인 segmentation 의 처리를 위하여 구역확장(region-growing) 기법을 응용한 새로운 segmentation 방법을 개발하였다. 그리하여, 본 논문이 제안한 알고리즘을 슬라이스 간격이 큰 2 차원 복부 CT 영상에 적용시켜 간(liver)의 추출을 시도하였고 3차원 표현 결과를 확인할 수 있었다.

  • PDF

간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석 (Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods)

  • 김희진;박승우;정해조;김미숙;유형준;지영훈;이철영;김금배
    • 한국의학물리학회지:의학물리
    • /
    • 제24권2호
    • /
    • pp.99-107
    • /
    • 2013
  • 간 전이 암은 이전에는 수술을 통한 외과적 절제가 주요 치료기법이었지만 방사선 치료 기법의 발전으로 인해 점차 방사선치료의 시행이 늘어나고 있다. 18F-FDG PET 영상은 간 전이 암 진단 시 더욱 우세한 민감도와 특이도를 보이며, 치료계획용 CT 영상과 더불어 종양조직의 위치를 정의하는 중요한 영상장비로 자리매김하고 있다. 본 연구에서는 간 전이 암의 18F-FDG PET 영상에 나타난 종양영역을 영상분할기법 적용하였으며 PET영상의 여러 인자들이 영상분할기법들에 미치는 영향을 알아보았다. 2009년부터 2012년까지 방사선 치료를 받은 간전이 환자들 중 18F-FDG PET/CT 촬영을 시행한 13명의 환자들의 치료계획용 CT와 PET/CT 영상을 얻었다. 그 뒤 PET 영상의 관심영역을 설정하기 위하여 3가지 영상 분할 기법인 상대적문턱기법, 기울기기법, 영역성장기법을 적용하였다. 이 결과들을 바탕으로 GTV와 각 영상 기법으로 구현된 종양 영역과 부피 비교를 시행하였으며 영상 분할 기법에 영향을 미치는 영상인자들과의 관계를 회귀 분석하였다. GTV (Gross Tumor Volume)의 평균 부피는 $60.9{\pm}65.9$ cc이며, 40% 상대적문턱값 기법은 $22.43{\pm}35.3$ cc, 50% 상대적문턱값 기법은 $10.11{\pm}17.9$ cc, 영역성장기법은 $32.89{\pm}36.8$ cc, 기울기기법은 $30.34{\pm}35.8$ cc로 나타났다. 기존의 GTV와 가장 유사한 영역을 나타낸 영상 분할 기법은 영역성장기법 이었다. 이 영역성장기법에 영향을 미치는 영상인자를 정량적으로 분석하기 위해 표준화 계수 ${\beta}$값을 이용하였으며, GTV의 크기, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR 순으로 나타났다. 이와 같은 PET 영상인자를 반영한 영상 분할 기법을 이용해서 종양 영역을 정의한다면 보다 정확하고 일관성 있는 종양그리기를 수행할 수 있으며 궁극적으로 종양에 최적화된 방사선량을 투여할 수 있을 것이다.

MeVisLab을 이용한 간 영역 분할 및 3차원 재구성 (Segmentation and 3-Dimensional Reconstruction of Liver using MeVisLab)

  • 신민준;김도연
    • 한국정보통신학회논문지
    • /
    • 제16권8호
    • /
    • pp.1765-1772
    • /
    • 2012
  • 의료기기 및 진단 기술의 발달로 신체 장기의 이식에 대한 성공률이 향상되었으며 특히 간 기능 장애에 의한 간이식이 늘어나는 추세이다. 영상처리 및 분석의 발달로 간 이식을 위한 간의 체적을 구하는 방법들이 정확성과 효율성이 높아졌다. 본 논문은 각 알고리즘들의 신속한 비교 및 분석, 빠른 프로토타입 개발에 효과적인 MeVisLab을 사용하여 간 영역을 분할하고 재구성하였다. 원본 영상에 문턱치 값 적용과 영역 확장법을 적용하여 간 영역을 분할하고 Morphology와 구멍 채우기, 관심영역 설정으로 노이즈 및 불필요한 객체를 제거하여 간을 분할하였다. MeVisLab의 사용으로 높은 시간적 효율과 다양한 비교 및 분석 모듈 사용 방법을 제시하여 의료영상처리 연구의 저변 확대에 기여하리라 판단된다.

Edge Detection을 이용한 간 혈관 추출 (Hepatic Vessel Segmentation using Edge Detection)

  • 서정주;박종원
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권3호
    • /
    • pp.51-57
    • /
    • 2012
  • 간 혈관 구조는 간에 대한 질병을 판단하거나 간 수술 계획을 세우는 데 중요한 요소이다. 특히 생체간이식에서 간 혈관 구조는 기증자와 수혜자의 안전을 보장하기 위하여 수술 전 환자의 간 상태를 파악하고 좌우엽의 체적을 계산하는 중요한 근거로 활용된다. 본 연구는 조영제를 투여한 복부 MDCT 영상에서 추출된 간 영상으로부터 간 혈관을 자동추출하기 위하여 노이즈에 강한 Canny edge detection을 활용할 수 있는 방안을 제안한다. 환자마다 달라질 수 있는 간 영상의 밝기와는 독립적으로 간 내부의 혈관을 추출하기 위하여 간 영상의 히스토그램과 평균 픽셀값을 이용하여 Canny 알고리즘에 사용되는 최적의 파라미터들을 정의한다. 간 영상의 밝기에 따라 파라미터를 수동으로 조절하는 경우보다 시간을 절약할 수 있다. 찾아진 혈관의 경계선에서픽셀의 밝기를 이용하여 후보 혈관을 추출한다. 최종적으로 수평과 수직방향으로 연결된 혈관이나 고립된 혈관을 검색하는 시스템을 이용하여 추출에 실패한 혈관을 추가하고 노이즈를 제거한다. 그 결과로써 환자마다 나타나는 다양한 혈관 모양을 정확하게 3차원으로 재구성한다.

Liver Segmentation and 3D Modeling from Abdominal CT Images

  • Tran, Hong Tai;Oh, A Ran;Na, In Seop;Kim, Soo Hyung
    • 스마트미디어저널
    • /
    • 제5권1호
    • /
    • pp.49-54
    • /
    • 2016
  • Medical image processing is a compulsory process to diagnose many kinds of disease. Therefore, an automatic algorithm for this task is highly demanded as an important part to construct a computer-aided diagnosis system. In this paper, we introduce an automatic method to segment the liver region from 3D abdominal CT images using Otsu method. First, we choose a 2D slice which has most liver information from the whole 3D image. Secondly, on the chosen slice, we enhanced the image based on its intensity using Otsu method with multiple thresholds and use the threshold to enhance the whole 3D image. Then, we apply a liver mask to mark the candidate liver region. After that, we execute the Otsu method again to segment the liver region from the chosen slice and propagate the result to the whole 3D image. Finally, we apply preprocessing on the frontal side of 3D images to crop only the liver region from the image.