• Title/Summary/Keyword: liver protective

Search Result 783, Processing Time 0.027 seconds

The Study of Protective Effect of Puerariae Radix against $CC1_4$-induced Hepatotoxicity ($CC1_4$로 유발된 백서의 간손상에 대한 갈근의 간보호작용 연구)

  • Hyun Dong Hwan;Jung Sun Yeong;Jung Sang Shin;Ha Ki Tae;Kim Cheorl Ho;Kim Dong Wook;Kim June Ki;Choi Dall Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.297-307
    • /
    • 2003
  • In the present study, we investigated the protective effect of the Puerarie Radix water extract (PRE) against CCl₄-induced hepatotoxicity and the mechanism underlying these protective effects in the rats. The pretreatment of PRE has shown to possess a significant protective effect by lowering the serum alanine and aspartate aminoteansferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective action was confirmed by histological observation. In addition, the pretreatment of PRE prevented the elevation of hepatic malondialdehyde (MDA) formation and the depletion of reduced glutathione (GSH) content and catalase activity in the liver of CC1₄-injected rats. The PRE also displayed hydroxide radical scavenging activity in a dose-dependent manner (IC50 = 83.6 μg/ml), as assayed by electron spin resonance (ESR) spin-trapping technique. Moreover, the expression of cytochrome P450 2E1 (CYP2E1) mRNA, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), was significantly decreased in the liver of PRE-pretreated rats when compared with that in the liver of control group. Based on these results, it was suggested that the hepatoprotective effects of the PRE may be related to antioxidant effects and regulation of CYP2E1 gene expression.

Protective Effect of Allomyrina dichotoma Larva Extract on tert-butyl Hydroperoxide-induced Oxidative Hepatotoxicity

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.2
    • /
    • pp.230-236
    • /
    • 2009
  • An extract of Allomyrina dichotoma larva (ADL), one of the insects used most frequently in traditional Chinese medicine for the treatment of liver diseases such as hepatocirrhosis and hepatofibrosis, was assessed for antioxidant bioactivity in this study. In the current work, we have investigated the protective effects of ADL extracts on tert-butyl hydroperoxide (t-BHP)-induced hepatotoxicity in cultured hepa1c1c7 cells and in the mouse liver. The treatment of the hepa1c1c7 cells with ADL extracts induced a significant reduction of t-BHP-induced oxidative injuries, as determined by cell cytotoxicity, lipid peroxidation (LPO) and reactive oxygen species contents, in a dose-dependent manner. Moreover, ADL extracts evidenced a protective effect against t-BHPinduced oxidative DNA damage, as revealed by the results of the Comet assay in hepa1c1c7 cells. ADL extracts also protected against hydroxyl radical-induced 2-deoxy-d-ribose degradation by ferric ion-nitrilotriacetic acid and $H_2O_2$. In addition, ADL extracts were shown to be able to quench 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals. Our in vivo study revealed that ADL extracts pretreatment applied prior to t-BHP administration significantly prevented an increase in the serum levels of hepatic enzyme markers and reduced LPO in the mouse liver in a dose-dependent manner. Taken together, these results suggest that the protective effects of ADL extracts against t-BHP-induced hepatotoxicity may be attributable, at least in part, to its ability to scavenge free oxygen radicals, and to protect against DNA damage due to oxidative stress.

The Study of Free Radical Scavenging Effect of Lycii Fructus by Liver Injury of Rats (백서 간손상에 의한 구기자의 유리자유기 소거능에 관한 연구)

  • Yoon Sang Ju;Jung Sun Yeong;Kim Young Mi;Ha Ki Tae;Kim Cheorl Ho;Kim Dong Wook;Kim June Ki;Choi Dall Yeong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.91-100
    • /
    • 2003
  • In the present study, we investigated the protective effect of the Lycii Fructus water extracts (LFE) against CCl4-induced hepatotoxicity and the mechanism underlying these protective effects in the rats. The pretreatment of LFE has shown to possess a significant protective effect by lowering the serum alanine and aspartate aminoteansferase (AST and ALT) and alkaline phosphatase (ALP). This hepatoprotective action was confirmed by histological observation, In addition, the pretreatment of LFE prevented the elevation of hepatic malondialdehyde (MDA) formation and the depletion of reduced glutathione (GSH) content and catalase activity in the liver of CC1₄-injected rats. The LFE also displayed hydroxide radical scavenging activity in a dose-dependent manner (IC50 = 83.6 μg/ml), as assayed by electron spin resonance (ESR) spin-trapping technique. Moreover, the expression of cytochrome P450 2E1 (CYP2E1) mRNA, as measured by reverse transcriptase-polymerase chain reaction (RT-PCR), was significantly decreased in the liver of LFE-pretreated rats when compared with that in the liver of control group. Based on these results, it was suggested that the hepatoprotective effects of the LFE may be related to antioxidant effects and regulation of CYP2E1 gene expression.

Protective Effect of Lactobacillus fermentum LA12 in an Alcohol-Induced Rat Model of Alcoholic Steatohepatitis

  • Kim, Byoung-Kook;Lee, In-Ock;Tan, Pei-Lei;Eor, Ju-Young;Hwang, Jae-Kwan;Kim, Sae-Hun
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.931-939
    • /
    • 2017
  • Alcoholic liver disease (ALD) is a complex multifaceted disease that involves oxidative stress and inflammation as the key mediators. Despite decades of intensive research, there are no FDA-approved therapies, and/or no effective cure is yet available. Probiotics have received increasing attention in the past few years due to their well-documented gastrointestinal health-promoting effects. Interestingly, emerging studies have suggested that certain probiotics may offer benefits beyond the gut. Lactobacillus fermentum LA12 has been previously demonstrated to play a role in inflammatory-related disease. However, the possible protective effect of L. fermentum LA12 on ALD still remain to be explored. Thus, the aim of this study was to evaluate the possible protective effect of L. fermentum LA12 on alcohol-induced gut barrier dysfunction and liver damage in a rat model of alcoholic steatohepatitis (ASH). Daily oral administration of L. fermentum LA12 in rat model of ASH for four weeks was shown to significantly reduced intestinal nitric oxide production and hyperpermeability. Moreover, small intestinal histological- and qRT-PCR analysis further revealed that L. fermentum LA12 treatment was capable of up-regulating the mRNA expression levels of tight junction proteins, thereby stimulating the restitution of barrier structure and function. Serum and hepatic analyses also revealed that the restoration of epithelial barrier function may prevent the leakage of endotoxin into the blood, subsequently improve liver function and hepatic steatosis in the L. fermentum LA12-treated rats. Altogether, results in this study suggest that L. fermentum LA12 may be used as a dietary adjunct for the prevention and treatment of ASH.

Protective Effect of Administrated Glutathione-enriched Saccharomyces cerevisiae FF-8 Against Carbon Tetrachloride ($CCl_4$)-induced Hepatotoxicity and Oxidative Stress in Rats

  • Shon, Mi-Yae;Cha, Jae-Young;Lee, Chi-Hyeoung;Park, Sang-Hyun;Cho, Young-Su
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.967-974
    • /
    • 2007
  • The present work is aimed to evaluate the protective effect of glutathione-enriched Saccharomyces cerevisiae FF-8 strain on carbon tetrachloride ($CCl_4$)-induced hepatotoxicity and oxidative stress in rats. The activities of liver markers (alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase), lipid peroxidative index (thiobarbituric acid-reactive substances), and the antioxidant status (reduced glutathione) were used to monitor those protective roles of FF-8 strain. The liver marker enzymes in plasma and the lipid peroxidation in the liver were increased when $CCl_4$ was treated but these were significantly decreased by FF-8 strain treatment. The hepatic concentration of glutathione in the current glutathione-enriched FF-8 strain fed animal was approximately twice as high as the normal, but this was slightly increased in response to $CCl_4$ plus glutathione-enriched FF-8 strain. The increased liver triglyceride concentration due to the $CCl_4$ treatment was significantly decreased by FF-8 strain and the reduced level reached to that of normal group. Administration of FF-8 strain in normal rat did not show any signs of harmful effects. Therefore, the current findings suggest that FF-8 strain could be an effective antioxidant with no or negligible side-effects and it might be useful for the purpose of protection treatment of hepatotoxicity and oxidative stress in $CCl_4$-treatment in rat.

Inhibition of hepatic stellate cell collagen synthesis by an aqueous extract isolated from Platycodon grandiflorum

  • Lee, Kyung-Jin;Jeong, Hye-Gwang
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.176.1-176.1
    • /
    • 2003
  • The protective effects on hepatic fibrosis of an aqueous extract from the roots of Platycodon grandiflorum A. DC (Campanulaceae), Changkil (CK), in hepatic stellate cell line, CFSC-2G. The increased deposition of extracellular matrix by hepatic stellate cells following liver injury in a process known as activation is considered a key mechanism for increased collagen content of liver during the development of liver fibrosis. (omitted)

  • PDF

Protective Effects of Ecklonia stolonifera Extract on Ethanol-Induced Fatty Liver in Rats

  • Bang, Chae-Young;Byun, Jae-Hyuk;Choi, Hye-Kyung;Choi, Jae-Sue;Choung, Se-Young
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.650-658
    • /
    • 2016
  • Chronic alcohol consumption causes alcoholic liver disease, which is associated with the initiation of dysregulated lipid metabolism. Recent evidences suggest that dysregulated cholesterol metabolism plays an important role in the pathogenesis of alcoholic fatty liver disease. Ecklonia stolonifera (ES), a perennial brown marine alga that belongs to the family Laminariaceae, is rich in phlorotannins. Many studies have indicated that ES has extensive pharmacological effects, such as antioxidative, hepatoprotective, and antiinflammatory effects. However, only a few studies have investigated the protective effect of ES in alcoholic fatty liver. Male Sprague-Dawley rats were randomly divided into normal diet (ND) (fed a normal diet for 10 weeks) and ethanol diet (ED) groups. Rats in the ED group were fed a Lieber-DeCarli liquid diet (containing 5% ethanol) for 10 weeks and administered ES extract (50, 100, or 200 mg/kg/day), silymarin (100 mg/kg/day), or no treatment for 4 weeks. Each treatment group comprised of eight rats. The supplementation with ES resulted in decreased serum levels of triglycerides (TGs), total cholesterol, alanine aminotransferase, and aspartate aminotransferase. In addition, there were decreases in hepatic lipid and malondialdehyde levels. Changes in liver histology, as analyzed by Oil Red O staining, showed that the ES treatment suppressed adipogenesis. In addition, the ES treatment increased the expression of fatty acid oxidation-related genes (e.g., PPAR-${\alpha}$ and CPT-1) but decreased the expression of SREBP 1, which is a TG synthesis-related gene. These results suggest that ES extract may be useful in preventing fatty acid oxidation and reducing lipogenesis in ethanol-induced fatty liver.

Protective Effect of Joo-Juk on Acetaminophen-induced Liver Damage in Mouse Model (Acetaminophen 유도 간 손상에 대한 주적(酒敵)의 보호 효과)

  • Kim, Sung-Zoo;Kang, Hyung-Sub;Shin, Jae-Suk;Xie, Guang-Hua;Huh, Jin;Jang, Seon-Il
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.123-132
    • /
    • 2009
  • Acetaminophen (AP) is widely used as an over-the-counter analgesic and antipyretic drug. AP-induced hepatotoxicity is a common consequence of AP overdose and may lead to acute liver failure. In this study, we investigated the liver damage in mice using single dose (300 mg/kg) of AP and the possible protective effects of administration (50-200 mg/kg body weight) of Joo-Juk on acetaminophen-induced liver damage in mice. The alanine aminotransferase (ALT), and aspartate aminotransferase (AST) activities were determined in the plasma of mice. The effect of Joo-Juk on lipid peroxidation product thiobarbituric reacting substances (TBARS) and some antioxidant enzymes superoxide dismutase (SOD), catalase, d-aminolevulinate dehydratase ($\sigma$-ALA-D) activities, and gluthathione peroxidase (GPx), were also evaluated in the mouse liver homogenate. AP caused liver damage as evident by statistically significant increased in plasma activities of AST and ALT. There were statistically significant losses in the activities of SOD, catalase, $\sigma$-ALA-D, and GPx and an increase in TBARS in the liver of AP-treated group compared with the control group. However, Joo-Juk was able to counteract these effects. These results suggest that Joo-juk can act as hepato-protectant against AP toxicity and is a good candidate for further evaluation as an effective chemotherapeutic agent.

  • PDF

Protective Effect of Herbal Mixture Including Lycii Fructus on Hepatotoxicity Induced by Thioacetamide in Mice (구기자 복합물 약침액이 간기능 개선에 미치는 영향)

  • Kim, Yong-Min;Hwang, Dong-Suk;Kwak, Byeong-Mun;Kim, Ee-Hwa
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Objectives : This study investigated the hepatoprotective effect of herbal mixture including Lycii fructus (HML) in thioacetamide (TAA)-induced hepatotoxicity in mice. Methods : To confirm the liver protective effect, induced by TAA for 3 days injection at 100 mg/kg mice, HML were treated for 8 weeks at 300 mg/kg/day, 1000 mg/kg/day. Positive control was treated silymarin 50 mg/kg/day after TAA injection. The changes of mortality rate, clinical signs, organ weight, relative liver, blood chemistry and histopathological findings were analyzed after experiment. Results : Body weight gain was observed in all groups, but TAA treated group at 4th week and all treated groups decreased weight compared to the untreated group. As a result of organ weight measurement, organ weight gain due to hepatic injury was observed statistically significantly in TAA-treated group and TAA+Silymarin treated group, and the herbal mixture-treated group showed a tendency to decrease compared to the TAA treated group. Blood biochemistry showed that total cholesterol and very low density lipoprotein cholesterol decreased statistically in TAA+low-dose and high dose herbal mixture treated group compared to the TAA-treated group. Histopathological examination showed that liver abnormalities were not observed in untreated group, liver fibrosis was observed in liver injury with TAA treated and herbal mixture treated group. And, TAA+high dose herbal mixture group showed relaxation tendency on liver calcification compared to the TAA treated group. Conclusions : According to the above results, HML provided hepatoprotective effects on the hepatic injury by reduction of inflammatory responses.

Pharmacological potential of ginseng and ginsenosides in nonalcoholic fatty liver disease and nonalcoholic steatohepatitis

  • Young-Su Yi
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.122-128
    • /
    • 2024
  • Nonalcoholic fatty liver disease (NAFLD) is a chronic liver disease characterized by hepatic fat accumulation, while nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD characterized by hepatic inflammation, fibrosis, and liver injury, resulting in liver cirrhosis and hepatocellular carcinoma (HCC). Given the evidence that ginseng and its major bioactive components, ginsenosides, have potent anti-adipogenic, anti-inflammatory, anti-oxidative, and anti-fibrogenic effects, the pharmacological effect of ginseng and ginsenosides on NAFLD and NASH is noteworthy. Furthermore, numerous studies have successfully demonstrated the protective effect of ginseng on these diseases, as well as the underlying mechanisms in animal disease models and cells, such as hepatocytes and macrophages. This review discusses recent studies that explore the pharmacological roles of ginseng and ginsenosides in NAFLD and NASH and highlights their potential as agents to prevent and treat NAFLD, NASH, and liver diseases caused by hepatic steatosis and inflammation.