Rehman, Shaheed Ur;Kim, n Sook;Choi, Min Sun;Luo, Zengwei;Yao, Guangming;Xue, Yongbo;Zhang, Yonghui;Yoo, Hye Hyun
Mass Spectrometry Letters
/
제6권2호
/
pp.48-51
/
2015
Kinsenoside is a principle bioactive compound of Anoectochilus formosanus. It exhibits various pharmacological effects such as antihyperglycemic, antioxidant, anti-inflammatory, immunostimulating, and hepatoprotective activities and has recently been developed as an antidiabetic drug candidate. In this study, as part of an in vitro pharmacokinetic study, the stability of kinsenoside in rat and human liver microsomes was evaluated. Kinsenoside was found to have good metabolic stability in both rat and human liver microsomes. These results will provide useful information for further in vivo pharmacokinetic and metabolism studies.
Studies on the biodisposition of beta-nicotyrine by lung and liver microsomes was examined in order to provide a better understanding of its fate in this tissue. beta-nicotyrine (100$\mu$M) was incubated with microsomes (1 mg/ml) prepared from New Zealand White rabbits. The rate of oxidation observed in lung microsomal incubations was 1.7 nmoles $\beta$-nicotyrine oxidized mg$^{-1}$ min$^{-1}$ compared with 2.7 nmoles $\beta$-nicotyrine oxidized mg$^{-1}$ min$^{-1}$ by the liver microsomal preparation. However, when these rates were expressed as a function of cytochrome P-450 content, the specific activity of the metabolic oxidation catalyzed by lung (8.3 nmoles $\beta$-nicotyrine oxidized nmole cytochrome P-450$^{-1}$ min$^{-1}$) was approxiamtely 4 times greater than liver microsomes (2.3 nmoles $\beta$-nicotyrine oxidized nmole cytochrome P-450$^{-1}$ min$^{-1}$). Isozyme studies on the oxidation of $\beta$-nicotyrine employed several methods of altering activities of specific isozymes present in pulmonary microsomes, including the use of the isozyme 2 and 6 specific inhibitor $\alpa$-methyl ABT, metabolic inhibitor(MI) complex formation. The results of this inhibition study would appear to indicate the $\beta$-nicotyrine is metabolized predominantly by pulmonary isozyme 5.
Objective : The aim of present study is to evaluate the inhibitory potential of licorice extract and glycyrrhizin on cytochrome P450(CYP) in human liver microsomes. Methods : Using human liver microsomes, water extract of licorice and glycyrrhizin as an inhibitor were co-incubated with each probe drug representing selective CYP isoform activity. We measured relative metabolic activity in incubation condition compared to that with no extract of licorice using HPLC system. Results : Both water extracts of licorice and glycyrrhizin showed inhibitory effect on CYP-catalyzed reactions. CYP2C19 $(IC_{50}=126.7{\mu}g/ml)$ is most potently inhibited by water extract than other tested CYP isoforms$(IC_{50}>450{\mu}g/ml)$, but glycyrrhizin exhibited potent inhibition on CYP1A2$(IC_{50}=106.9{\mu}g/ml)$ followed by CYP2C9 and CYP2D6. Conclusion: These results indicate that water extract of licorice and glycyrrhizin have inhibitory potential on CYP-catalyzed reaction in human liver microsomes. But the mechanism of inhibition was slightly different between them Water extract of licorice mainly inhibited CYP2C19, and glycyrrhizin primarily inhibited CYP1A2. The inhibition by water extract of licorice and glycyrrhizin on CYP isoforms may cause drug interaction with co-administered drug leading to toxicity or treatment failure.
Metabolism of tranylcypromine (TCP) in rat liver microsomes was studied in vitro using fortified microsomal preparations. As well as unlabeled TCP, two deuterium labeled analogs, TCP-phenyl-$d_{5}$ and TCP-cyclopropyl-$d_{2}$ were used and GC/MS employed which was then metabolized to cinnamaldehyde and hydrocinnamyl alcohol. Schiff bases of TCP with hydrocinnamaldehyde and acetaldehyde were detected and possibility of the metabolic formation of N-ethylidene TCP was proposed. In addition, acetophenone (benzoylacetic acid), benzaldehyde, benzoic acid, and benzyl alcohol were detected as the metabolites. Chemical decomposition studies suggested that parts of the oxidized products might be derived by air oxidation processes. A potential metabolite assumed to be N-ethylidene-1, 2-dihydroxy-3-phenylpropanamine oxide was also detected.
Ji, Hye-Young;Kim, Sook-Jin;Lee, Hong-Il;Lee, Seung-Seok;Lee, Dong-Ha;Lim, Hong;Lee, Hye-Suk
대한약학회:학술대회논문집
/
대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.1
/
pp.286.2-287
/
2003
The purpose of this paper was to identify the metabolic pathway of a new neuroprotective agent, KR-31543 for ischemia-reperfusion damage in human liver microsomes and characterize cytochrome P450 (CYP) enzymes involved in the in vitro metabolism of KR-31543 generates two metabolites in human liver microsomes : M1, N-(4-chlorophenyl)-N-(2-methyl-2H-tetrazol-5-ylmethyl)amine and M2, hydroxy-KR-31543. (omitted)
Phenoxy compounds, 2,4-Dichlorophenol acetoxy acid (2,4-D) and 2,4-dichlorophenol (DCP), are widely used as a hormonal herbicide and intermediate for pesticide manufacturing, respectively. In order to assess the potential of these compounds as endocrine disruptors, we studied the androgenicity of them wing in vivo and in vitro androgenicity assay system. Administration of 2,4-D (50 mg/kg/day, p.o.) or DCP (100 mg/kg/day, p.o.) to rats caused an increase in the tissue weight of ventral prostate, Cowpers gland and glands penis. These increase of androgen-dependent tissues were additively potentiated when rats were simultaneously treated with low dose of testosterone (1 g/kg, s.c.). 2,4-D increased about 350% of the luciferase activity in the PC cells transiently cotransfected phAR and pMMTV-Luc at concentration of $10^{-9}$ M. In 2,4-D or DCP-treated castrated rats, testosterone 6$\beta$-hydroxylase activity was not significantly modulated even when rats were co-treated with testosterone. In vitro incubation of 2,4-D and DCP with microsomes at 50 $\mu$M inhibited testosterone 6$\beta$-hydroxylase activity about 27% and 66% in rat liver microsomes, about 44% and 54% in human liver microsomes and about 50% and 45% in recombinant CYP3A4 system, respectively. The amounts of total testosterone metabolites were reduced about 33% and 75% in rat liver microsomes, 69% and 73% in human liver microsomes and 54% and 64% in recombinant CYP3A4 by 2,4-D or DCP, respectively. Therefore, the additive androgenic effect of 2,4-D or DCP by the co-administration of the low dose of testosterone may be due to the increased plasma level of testosterone by inhibiting the cytochrome P450-mediated metabolism of testosterone. These results collectively suggested that 2,4-D and DCP may act as androgenic endocrine disrupter by binding to the androgen receptor as well as by inhibiting the metabolism of testosterone.
A splenocyte culture system supplemented with liver microsomes was developed to detect immunotoxic chemicals which require metabolic activation using cyclophosphamide as a positive standard. When liver microsomes were added to splenocyte cultures isolated from female B6C3Fl mice, the proliferation of splenocytes by lipopolysaccharide (LPS) was increased and the proliferation by concanavalin A (Con A) was decreased. However, when compared with each corresponding control, cyclophophamide was successfully activated to metabolites capable of suppressing Iymphoproliferative responses. This suppression was clearly dependent upon the amounts of microsomes added and/or the concentration of cyclophosphamide exposed. In these cultures, the proliferation of splenocytes was suppressed when the cells were exposed to cyclophosphamide on the day of culture initiation. On the other hand, microsome was responsible for the increase in LPS mitogenicity and NADPH was responsible for the decrease in Con A mitogenicity. Finally, our present culture system was compared with the hepatocyte-splenocyte coculture system which we had developed earlier. We found that the hepatocyte-splenocyte coculture was better able to activate cyclophosphamide to metabolites capable of suppressing the antibody response to sheep erythrocytes. Although our present culture system was relatively poor to activate cyclophosphamide in cultures for antibody response, it will be useful as a simple screening method to detect suppression of certain in vitro immunotoxic parameters like LPS mitogenicity by chemicals which require metabolism.
Previously, we showed that acetone enhanced aryl hydrocarbon hydroxylase (AHH) activity in only 3-methylcholanthrene (MC)- or $\beta$-naphtoflavone (BNF)-inducible microsomes of rat liver. In the present study, the possible mechanism underlying acetone action on AHH was investigated in the liver microsomes from MC-pretreated rats. Other n-alkylketones except acetone did not increase AHH activity, which rather decreased significantly with the length of alkyl side chain. Acetone had no effect on the activity of NADPH-cytochrome P450 reductase or inhibited the formation of 3-OH benzo(a)pyrene (B(a)P) in nonenzymatic model ascorbic acid system. However, in cumene hydroperoxide (CuOOH)-supported B(a)P hydroxylation, acetone enhanced its velocity remarkably by 30% at the optimal concentration (30 $\mu$M CuOOH and 1.0% acetone). From these results, we conclude that acetone may facilitate the formation of an activated oxygen species or the insertion of oxygen into B(a)P molecule in CYP1A rich microsomes.
Effect of perilla oil on the fatty acid composition, ACAT and HMG-CoA reductase in the liver microsomes, or cholesterol and protein in serum of rabbit were examined. 1. The content of total protein in serum was almost same amount of both groups, but ${\alpha_1}-globulin$ and r-globuline were incresed or ${\beta}-globulin$ was decresed compared with control. 2. The content of high density lipoprotein incresed, and the content of low density lipoprotein decresed in lipoprotein. 3. Total cholesterol and triglyceride were decresed, and the content of phospholipid was incresed. 4. Perilla oil did not effect for changing blood glucose and $Na^+,\;K^+$ electrolytes. 5. Perilla oil did not effect for changing serum GOT and GPT in rabbit. 6. The activity of ACAT decresed and the activity of HMG-CoA reductase incresed. The activity of ACAT and HMG-CoA reductase in liver microsomes were reciprocal. 7. There were arachidonic acid 20:4, eicosapentaenoic acid 20:5, and docosahexaenoic acid 22:6 in the liver microsomes of rabbits. These highly polyunsaturated fatty acids were convented from linolenic acid 18:3 n-3.
The present study was designed to examine the metabolism of 1-anilino-8-naphthalene sulfonate (ANS), an anionic compound which is transported into liver via "multispecific organ ic anion transporter", with rat hepatic microsomes. TLC analysis indicated that the fluorescent metabolites were not produced to a measurable extent, which made it possible to assess the ANS metabolism by measuring the fluorescence disappearance. The metabolism of ANS was remarkably inhibited by the presence of SKF-525A as well as by the substitution of 02 by CO gas. ANS metabolism by microsomes also required NADPH as a cofactor. These results indicated that the microsomal monooxygenase system might be mainly responsible for the ANS metabolism. The maximum velocity ($V_{max}$) and Michaelis constant ($K_m$) were calculated to be $4.3{\pm}0.2$ nmol/min/mg protein and $42.1{\pm}2.0\;{\mu}M$, respectively. Assuming that 1g of liver contains 32mg of microsomal protein, the $V_{max}$ value was extrapolated to that per g of liver ($V_{max}^I$). The intrinsic metabolic clearance ($CL_{int}$) under linear conditions calculated from this in vitro metabolic study was 3.3ml/min/g liver, being comparable with that (3.0ml/min/g liver) calculated by analyzing the in vivo plasma disappearance curve in a previous study. Furthermore, the effects of other organic anions on the metabolism of ANS were examined. Bromophenolblue (BPB) and rose bengal (RB) competitively inhibited the metabolism of ANS, while BSP inhibited it only slightly. The inhibition constant ($K_i$) of BPB ($6\;{\mu}M$) was much smaller than that of RB ($200\;{\mu}M$). In conclusion, the microsomal monooxygenase system plays a major role in the metabolism of ANS, and other unmetabolizable organic anions (BPB and RB) compete for this metabolism.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.