• 제목/요약/키워드: liver microsomes

검색결과 180건 처리시간 0.025초

Protective Action of Ambroxol on the Oxidative Damages of Lipids Hyaluronic Acid and Collagen

  • Ji Young KOH;Yung CHO;Eun Sook HAN;Lee, Chung-Soo
    • Biomolecules & Therapeutics
    • /
    • 제6권2호
    • /
    • pp.111-118
    • /
    • 1998
  • Ambroxol is thought to have antioxidant ability and some antiinflammatory effect. Effect of ambroxol on the oxidative damages of lipid, collagen and hyaluronic acid was examined. F $e_{2+}$(10 $\mu$M) and 100$\mu$Mascorbate-induced lipid peroxidation of liver microsomes was inhibited by 10 and 100$\mu$M ambroxol, 30$\mu$g/ml catalase and 10 mM DABCO but was not affected by 30$\mu$g/ml SOD and 10 mM DMSO. A 10 and 100$\mu$M ambroxol and 10 mM DABCO inhibited the peroxidative action of 10$\mu$M F $e_{3+}$, 160$\mu$M ADP and 100$\mu$M NADPH on microsomal lipids, whereas inhibitory effects of 30$\mu$g/ml SOD,30$\mu$g/ml catalase and 10 mM DMSO were not detected. The degradation of hyaluronic acid caused by 107M Fe2\\`,5007M H2O2 and 100$\mu$M ascorbate was inhibited by 10 and 100$\mu$M ambroxol,30$\mu$g/ml catalase,10 mM DMSO and 10 mM DABCO, while 30$\mu$g/ml SOD did not show any effect. The cartilage collagen degradation caused by 307$\mu$ F $e_{2+}$,500$\mu$M $H_2O$$_2$ and 200$\mu$M ascorbate was prevented by 100$\mu$M ambroxol. $H_2O$$_2$ and OH . were scavenged by ambroxol, whereas $O_2$, was not removed by it. Ambroxol (100$\mu$M) and 1 mM cysteine reduced DPPH to 1,1-diphenyl-2-picrylhydrazine. In conclusion, ambroxol may inhibit the oxidative damages of lipid, hyaluronic acid and collagen by its scavenging action on oxidants, such as OH . and probably iron-oxygen complexes and exert antioxidant ability.

  • PDF

Lipid Peroxidation of Hepatic Microsomal Drug-Metabolizing System in Hepatic Ischemia ands Reperfusion (간장내 허혈 및 재관류시 약물대사 효소계의 지질 과산화에 관한 연구)

  • 이선미;박미정;이상호;박두순;조태순
    • Biomolecules & Therapeutics
    • /
    • 제2권2호
    • /
    • pp.141-148
    • /
    • 1994
  • This study was done to determine whether specific alterations exist in hepatic microsomal function after varying periods of ischemia (IS) and reperfusion (RP) during microsomal lipid peroxidation occurs. Rats were pretreated with $\alpha$-tocopherol to inhibit lipid peroxidation or with vehicle (soybean oil). Control animals were time-matched sham-ischemic animals. Four groups of animals were studied: Group 1 (sham), group 2 (30 mins IS), group 3 (60 mins IS) and group 4 (90 mins IS). After 1, 5 or 24 hr of reperfusion, liver microsomes were isolated and cytochrome P-450s were studied. In all vehicle-treated ischemic rats, serum ALT levels peaked at 5 hr and were significantly reduced by $\alpha$-tocopherol pretreatment. Similarly, microsomal lipid peroxidation was elevated in all vehicle-treated ischemic animal groups, but this elevation was prevented by $\alpha$-tocopherol pretreatment. Cytochrome P-450 content was significantly decreased in both group 3 and group 4. In all vehicle-treated ischemic animal groups, aminopyrine N-demethylase activity was significantly decreased for the entire reperfusion period. $\alpha$-Tocopherol inhibited reductions of cytochrome P-450 content and aminopyrine N-demethylase activity at both 1 hr and 5hr of reperfusion but did not affect the reduced levels of cytochrome P-450 content and aminopyrine N-demethylase activity at 24 hr of reperfusion. Aniline p-hydroxylase activity was significantly decreased in group 4, whereas it was increased in group 3. These decreases and increases were prevented by $\alpha$-tocopherol pretreatment. Our finding suggests that abnormalities in microsomal drug metabolizing function occur during hepatic ischemia and reperfusion in vivo and this is attributed to microsomal lipid peroxidation.

  • PDF

Effect of Vitamin C on Hepatic Biliary and Microsomal Function in Hepatic Ischemia/reperfusion (간장 허혈 및 재관류시 Vitamin C가 간장 기능에 미치는 영향)

  • 김순애;서민영;염동호;조태순;이선미
    • Biomolecules & Therapeutics
    • /
    • 제3권4호
    • /
    • pp.304-310
    • /
    • 1995
  • This study was done to investigate the effect of vitamin C on hepatic biliary and microsomal function during ischemia and reperfusion. Rats were treated with vitamin C(20, 100, 400, 1600 mg/kg) or with vehicle(saline) and then subjected to 60 min no-flow hepatic ischemia in vivo. Control animals were time-matched sham ischemic animals. After 1 or 5 hr of reperfusion, bile was collected, blood was obtained from the abdominal aorta, and liver microsomes were isolated. In vehicle-treated ischemic rats, serum ALT and AST levels peaked at 5 hr and were significantly attenuated by vitamin C 20 mg/kg and 100 mg/kg treatment. Similarly, hepatic wet weight-to-dry weight ratio was decreased in the vehicle-treated ischemic group. Vitamin C 20 mg/kg and 100 mg/kg treatment minimized the increase in this ratio. Lipid peroxidation was elevated in vehicle-treated ischemic group, but this elevation was also inhibited by vitamin C 20 mg/kg and 100 mg/kg treatment. Bile flow and cholate output, but not bilirubin output, were markedly decreased by ischemia/reperfuzion. Vitamin C 20 mg/kg and 100mg/kg treatment restored the secretion but vitamin C 1600 mg/kg reduced the cholate output. Cytochrome P-450 content was decreased by ischemia/reperfusion and restored by vitamin C 20 mg/kg and 100 mg/kg treatment to the level of sham operated group but decreased by vitamin C 1600 mg/kg. Aminopyrine N-demethylase activity was decreased and aniline p-hydroxylase activity was increased by ischemia/reperfusion. The changes in the activities of aminopyrine were prevented by vitamin C 20 mg/kg and 100 mg/kg treatment, but not by 400 mg/kg and 1600 mg/kg treatment. Our findings suggest that ischemia/reperfusion diminishes hepatic secretory functions as well as microsomal drug metabolizing systems, small doses(20, 100 mg/kg) of vitamin C significantly ameliorates and large doses(400, 1600 mg/kg) of vitamin C aggravated these ischemia/reperfusion-induced changes.

  • PDF

In Vitro Inhibitory Effect of Licoricidin on Human Cytochrome P450s

  • Kim, Sunju;O, Heungchan;Kim, Jeong Ah;Lee, Seung Ho;Lee, Sangkyu
    • Mass Spectrometry Letters
    • /
    • 제5권3호
    • /
    • pp.84-88
    • /
    • 2014
  • Licoricidin isolated from Glycyrrhiza uralensis is known to have anticancer, anti-nephritic, anti-Helicobacter pylori, and antibacterial effects. In this study, a cocktail probe assay and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were used to investigate the modulating effect of licoricidin on cytochrome P450 (CYP) enzymes in human liver microsomes. When licoricidin was incubated at $0-25{\mu}m$ with CYP probes for 60 min at $37^{\circ}C$, it showed potent inhibitory effects on CYP2B6-catalyzed bupropion hydroxylation and CYP2C9-catalyzed diclofenac 4'-hydroxylation with half maximal inhibitory concentration ($IC_{50}$) values of 3.4 and $4.0{\mu}m$, respectively. The inhibition mode of licoricidin was revealed as competitive, dose-dependent, and non-time-dependent, and following the pattern of Lineweaver-Burk plots. The inhibitory effect of licoricidin has been confirmed in human recombinant cDNA-expressed CYP2B6 and 2C9 with $IC_{50}$ values of 4.5 and $0.73{\mu}m$, respectively. In conclusion, this study has shown the potent inhibitory effect of licoricidin on CYP2B6 and CYP2C9 activity could be important for predicting potential herb-drug interactions with substrates that mainly undergo CYP2B- and CYP2C9-mediated metabolism.

In vitro Assessment of Cytochrome P450 Inhibition by Red Ginseng Ginsenosides (홍삼 Ginsenoside의 Cytochrome P450 저해 활성 평가)

  • Ryu, Chang Seon;Shin, Jang Hyun;Shin, Byoung Chan;Sim, Jae Han;Yang, Hyeon Dong;Lee, Sung Woo;Kim, Bong-Hee
    • YAKHAK HOEJI
    • /
    • 제59권2호
    • /
    • pp.49-54
    • /
    • 2015
  • In the present study we evaluated comparative herb-drug interaction potential of red ginseng total powder, ginsenoside Rg1, and Rb1 by inhibition of CYP isoforms including CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and CYP3A4 using pooled human liver microsomes (HLMs). As measured by liquid chromatography-electrospray ionization tandem mass spectrometry, red ginseng total powder inhibited significantly activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP2E1 and testosterone 6-beta hydroxylation by CYP3A4, but the $IC_{50}$ values were higher than $556{\mu}g/ml$. Activities of CYP2B6, CYP2C9, CYP2D6 and CYP3A4 were inhibited by ginsenoside Rb1. Also, activities of CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6 and testosterone 6-beta hydroxylation by CYP3A4 were inhibited by ginsenoside Rg1. The $IC_{50}$ values of ginsenoside Rb1 and Rg1 were higher than $200{\mu}g/ml$. Based on $IC_{50}$ values against CYP isoforms, ginsenosides-drug interactions by CYP inhibition may be very low in clinical situations.

Tentative identification of 20(S)-protopanaxadiol metabolites in human plasma and urine using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry

  • Ling, Jin;Yu, Yingjia;Long, Jiakun;Li, Yan;Jiang, Jiebing;Wang, Liping;Xu, Changjiang;Duan, Gengli
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.539-549
    • /
    • 2019
  • Background: 20(S)-Protopanaxadiol (PPD), the aglycone part of 20(S)-protopanaxadiol ginsenosides, possesses antidepressant activity among many other pharmacological activities. It is currently undergoing clinical trial in China as an antidepressant. Methods: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass tandem mass spectrometry method was established to identify the metabolites of PPD in human plasma and urine following oral administration in phase IIa clinical trial. Results: A total of 40 metabolites in human plasma and urine were identified using this method. Four metabolites identified were isolated from rat feces, and two of them were analyzed by NMR to elucidate the exact structures. The structures of isolated compounds were confirmed as (20S,24S)-epoxydammarane-12,23,25-triol-3-one and (20S,24S)-epoxydammarane-3,12,23,25-tetrol. Both compounds were found as metabolites in human for the first time. Upon comparing our findings with the findings of the in vitro study of PPD metabolism in human liver microsomes and human hepatocytes, metabolites with m/z 475.3783 and phase II metabolites were not found in our study whereas metabolites with m/z 505.3530, 523.3641, and 525.3788 were exclusively detected in our experiments. Conclusion: The metabolites identified using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry in our study were mostly hydroxylated metabolites. This indicated that PPD was metabolized in human body mainly through phase I hepatic metabolism. The main metabolites are in 20,24-oxide form with multiple hydroxylation sites. Finally, the metabolic pathways of PPD in vivo (human) were proposed based on structural analysis.

Effects of Pine Needle Butanol Fraction on Membrane Fluidity and Oxidative Stress in Liver Membranes of Rats (간장 세포막의 유동성과 산화적 스트레스에 미치는 솔잎(Pine Needle) 부탄올획분의 영향)

  • 최진호;김대의;최민경;조원기;김창목
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • 제32권7호
    • /
    • pp.1082-1087
    • /
    • 2003
  • This study was designed to investigate the effects of butanol (BuOH) fraction of pine (Pinus densiflora Sieb et Zucc) needle extract on membrane fluidity (MF), basal and induced oxygen radicals (BOR and IOR), lipid peroxide (LPO) and oxidized protein (OP) as an oxidative stress, and lipofuscin (LF) in liver membranes of Sprague-Dawley male rats. The rats were fed basic diets (control group) and experimental diets (BuOH-25, BuOH-50 and BuOH-100) prepared with 25, 50 and 100 mg added to basic diet for 45 days. MFs were significantly increased (about 16∼22%) in mitochondria of BuOH-50 and BuOH-100 groups compared with control group (p<0.01∼0.001) BOR and IOR formations in mitochondria were significantly decreased (11∼17% and 11∼28%, respectively) in these three BuOH groups (p<0.05∼0.001), while BOR and IOR formations in microsomes were significantly decreased (11∼24%) in BuOH-50 and BuOH-100 groups, and (15∼24%) in these three BuOH groups compared with control group (p<0.05∼0.001; p<0.01-0.001). LPO levels were significantly decreased (9% and 9∼13%, respectively) in mitochondria of BuOH-100 and microsomes of BuOH-50 and BuOH-100 groups (p<0.05∼0.01), whereas OP levels were significantly decreased (10∼12%) in mitochondria of BuOH-50 and BuOH-100 groups compared with control group (p<0.05). LF formations were significantly decreased (8∼9%) in BuOH-50 and BuOH-100 groups (p<0.05). These results suggest that butanol fraction of pine needle extract may playa effective role in an attenuating an oxidative stress and increasing a membrane fluidity.

Effect of Spirodela polyrhiza on Antioxidant Activity in Diet-induced Obese Rats (고지방 및 고콜레스테롤 식이로 유도 된 비만 쥐에서 부평초의 간 조직에서의 항산화 활성에 미치는 영향)

  • Song, Won-Yeong;Choi, Jeong-Hwa
    • Journal of Life Science
    • /
    • 제31권5호
    • /
    • pp.488-495
    • /
    • 2021
  • The aim of this study was to investigate the possible antioxidant effect of Spirodela polyrhiza (SP) on rats fed a high fat and high cholesterol diet supplemented with either 5% (SPA group) or 10% (SPB group) SP for 4 weeks. The hepatic SOD activity of the HF group significantly decreased compared to that of the N group, but that of the SPA and SPB groups significantly increased. The GPx activity of the SPA and SPB groups in the liver was significantly greater than that of the HF group, and the hepatic catalase activity of the SPA and SPB groups significantly increased compared to the HF group. The hepatic superoxide radical content of the mitochondria and microsomes of the HF group significantly increased compared to that of the N group, but the contents were reduced in the group that took SP powder. The hepatic hydrogen peroxide content in the cytosol and mitochondria of the SP powder group was lower than in the HF group. The carbonyl content in the mitochondria and microsomes of the SPA and SPB groups was significantly lower than in the HF group. The TBARS values in the liver significantly decreased in the SPA and SPB groups. Spirodela polyrhiza was thus effective in reducing oxidative stress by regulating the hepatic antioxidant enzymes and the free radicals in rats fed high fat and high cholesterol diets.

Gender Differences in Activity and Induction of Hepatic Microsomal Cytochrome P-450 by 1-Bromopropane in Sprague-Dawley Rats

  • Kim, Ki-Woong;Kim, Hyeon-Yong;Park, Sang-Shin;Jeong, Hyo-Seok;Park, Sang-Hoi;Lee, Jun-Yeon;Jeong, Jae-Hwang;Moon, Young-Hahn
    • BMB Reports
    • /
    • 제32권3호
    • /
    • pp.232-238
    • /
    • 1999
  • Sex differences in the induction of microsomal cytochrome P-450 (CYP) and the activities of several related enzymes of Sprague-Dawley rats treated with 1-bromopropane (1-BrP) were investigated. Male and female rats were exposed to 50, 300, and 1800 ppm of 1-BrP per kg body weight (6 h a day,S days a week, 8 weeks) by inhalation. The mean body weight of 1-BrP treated groups increased according to the day elapsed, but four and five weeks respectively after the start of the exposure, the mean body weight of male and female rats had significantly reduced in the group treated with 1800 ppm 1-BrP compared with the control group (p<0.01). While the relative weights of liver increased in both sexes, statistical significance in both sexes was found only in the group receiving 1800 ppm/kg of 1-BrP (p<0.01). The total contents of CYP, $b_5$, NADPH-P-450 reductase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), pentoxyresorufin-O-dealkylase (PROD), and p-nitrophenol hydroxylase (pNPH) activities were examined for the possible effects of 1-BrP. No significant changes in the CYP and $b_5$ contents, NADPH-P-450 reuctase, NADH $b_5$ reductase, ethoxyresorufin-O-deethylase (EROD), and pentoxyresorufin- O-dealkylase (PROD) were observed between the control and treated groups. The activity of pNPH increased steadily with the increase in the concentration of 1-BrP in both sexes, but was significantly increased only in the 1800 ppm-treated group of male rats (p<0.05). When Western blottings were carried out with three monoclonal antibodies (MAb 1-7-1, MAb 2-66-3, and MAb 1-98-1) which were specific against CYP1A1/2, CYP2B1/2, and CYP2E1, respectively, a strong signal corresponding to CYP2E1 was observed in microsomes obtained from rats treated with 1-BrP. Glutathione S-transferase (GST) activity and the content of lipid peroxide significantly increased in the treated groups compared with the control group (p<0.05). These results suggest that 1-BrP can primarily induce CYP2E1 as the major form and that GST phase II enzymes play important roles in 1-BrP metabolism, showing sex-dependence in the metabolic mechanism of 1-BrP in the rat liver.

  • PDF

Mechanism and Effect of Corydalis ternata on the $CCl_4$-Induced$ Hepatotoxicity (사염화탄소에 의한 간손상에 미치는 현호색의 효과 및 그 기전)

  • 서인옥;정춘식;정기화
    • Journal of Food Hygiene and Safety
    • /
    • 제15권3호
    • /
    • pp.226-234
    • /
    • 2000
  • Protective effect of Corydalis ternata against the carbon tetrachloride-induced toxicity was investigated. Carbon tetrachloride($CCl_4$) induces hepatotoxicity due to the reactive free radical(CCl$_3$ . ) generated by cytochrome P-450 enzyme. We examined effects of hexane, chloroform, butanol and water fractions prepared from the Corydalis ternata methanol extract. Rats were treated with those for 3 days, and liver microsomes and cytosols were prepared at 24 hour after last treatment. Hepatoprotective activity of the water fraction was higher than that of other fractions. To examine mechanism of the hepatoprotective effect of Corydalis ternuta, we measured contents of malondialdehyde(MDA), cytochrome P46O(CYP), glutathione, calcium as well as the activities of NADPH-CYP reductase, glutathione S-transferase(GST), superoxide dismutase(SOD), glutathione peroxidase(GPX) and catalase. The fraction inhibited production of MDA, content of CYP and calcium in liver of water fractions - treated rats as compared with those of CCl4-treated rats. The GST activity was increased. We speculate that the O2 radical scavenging activities of the water fraction might play a key role in the mechanism opposing the progression of $CCl_4$-induced hepatotoxicity, but the activities of SOD, GPX, CAT were decreased. These results suggest that the mechanism might be mainly due to the decrease of CYP contents, act as calcium channel blocker and increase of GST activity rather than $O_2$ radical scavenging activities.

  • PDF