• Title/Summary/Keyword: liver cells

Search Result 1,990, Processing Time 0.025 seconds

Functional and morphological changes of the livers by 5-fluorouracil treatment on diethylnitrosamine-treated rat (발암제 (DEN) 투여 rat의 간암 진행상태의 기능학적 및 형태학적 변화와 항암제(5-FU) 처리효과 시험)

  • Kim Cheol-Ho;Cheon Sung-Hwa;Bhak Jong-Sik;Kim Nam-Cheol;Kang Chung-Boo
    • Korean Journal of Veterinary Service
    • /
    • v.29 no.3
    • /
    • pp.347-364
    • /
    • 2006
  • This study is concerned with assessment of diethylnitrosamine (DEN 0.01 %) induced liver cell carcinogenesis by measurement of changes preceding the development of neoplasms. Therefore, it was undertaken to investigate changes of liver-specific enzyme activities in Sprague-Dawley (SD) rats by ad libitum feeding of DEN. And also. the changes of hepatic morphology in SD rats were detected by haematoxylineosin stain and immunohistochemistry (PCNA). 5- Fluorouracil (5- FU) is one of the most widely used anticancer agents for digestive cancers including hepatocellular carcinoma, and is known to affect the cell cycle and induce apoptosis of cancer cells. In the present study, SD rats were given drinking water containing 0.01% diethylnitrosamine (DEN) for 8 weeks. Minor behavioral change, brittleness of hair and decreased amount of water and diet intake were observed in rats 4 weeks after DEN administration. The body and liver weights were significantly (p < 0.05) decreased in rats 11 weeks after DEN administration. The liver weight ratio to body weight was rather stable and not significantly decreased in the all treatment groups. The liver specific enzyme activities (AST, ALT, ${\gamma}$-GTP) were significantly increased in all treatment groups compared to control group (p < 0.05). Variable size of liver tumor and hepatomegaly were observed in rats treated with DEN after 10 weeks. Numerous vacuoles were seen on the midzonal and or peripheral areas of hepatic lobules. The large and polymorphological hepatocytes with eosinophilic cytoplasm or densely basophilic mitotic nucleoli were seen. Several proliferative small round cells were seen on vacuolated and necrotic areas in peripheral hepatic lobules or portal areas. PCNA-positive cells were seen on the vacuolated portal areas and peripheral areas of hepatic lobules in the areas of small round cells. We examined functional and morphological changes of livers by 5 - FU treatments on DEN -treated rat. The DEN -treated rats compared to 5 - FU -treated rats after DEN treatment for 8 weeks. The serum total protein and triglyceride were significantly (p < 0.05) decreased, and the liver enzyme activities of AST and ALT were significantly(p < 0.05) increased. After 8 weeks, in the non-5-FU -treated group, the size of liver tumor were varied and hepatomegaly were observed, hepatocellular vacuolization, necrosis and steatosis were observed on the midzonal and peripheral areas of hepatic lobules. The large and polymorphological hepatocytes were seen, the interlobular connective tissues were proliferated. PCNA positive cells were seen in the portal areas and peripheral areas of hepatic lobules in the non-5-FU-treated group. In hepatocytes, condensation of nuclear chromatin and vacuolization were observed, shape of the nuclei were irregular, the degraded nuclei and organelles were observed. The livers of rats in the 5 - FU treatment group were seen grossly brilliant, red-brown color, and the vacuolated and degenerated regions, hyperplastic nodules were not nearly observed. In the electron microscope, the cytoplasm of the hepatocytes contained a large number of mitochondria, rough endoplasmic reticulum, developed organelles surrounding nuclei. The above findings suggest that 5 - FU will be effective as anti -liver tumor drug.

Studies on the Effects of Copper on the Lactate Dehydrogenase and Esterase Isozymes in Various Tissues of Carassius carassius (붕어(Carassius carassius)의 조직내 젖산수소이탈효소와 에스테라아제 아이소자임에 미치는 동의 영향에 관한 연구)

  • Lee, Choon-Koo;Choo, Il-Young
    • The Korean Journal of Zoology
    • /
    • v.16 no.2
    • /
    • pp.79-96
    • /
    • 1973
  • In order to elucidate the effects of copper on Corassius carassius, the following were studied: 1) lactate dehydrogenase isozyme patterns by cellulose acetate electrophoresis, 2) LDH activity and copper effect on LDH enzyme system y spectrophotometry, 3) esterase isozyme patterns by agar thin layer electrophoresis, 4) hemoglobin patterns by starch gel electrophoresis, and 5) histological study. 1. There were two bands of LDH isozymes (LDH-3 and LDH-5) in the gill, three bands (LDH-2, LDH-4, and LDH-5) in the liver, and two bands (LDH-3 and LDH-4) in the muscle of the normal fish. The LDH-1 bond was not found in the above three tissues. When the fish were exposed to copper, LDH-3 appeared in the liver, LDH-5 in the muscle, but no new LDH band appeared in the gill. 2. The sepcific activities of the LDH were lowest in the gill and highest in the muscle of the normal fish, and they were gradually decreassed in the gill and highest in the muscle of the normal fish, and they were gradually decreased in the liver and mucle except in the gill from 1-day to 10-day exposure to copper. It indicates that LDH activities in the liver and muscle of the fish were inhibited by copper. 3. Through in vitro experiment, it is clear that the decrease of the LDH activities of the liver and muscle of the fish exposed to copper is mainly caused by the inhibition on the M-LDH in the fish. 4. The numbers of the esterase isozyme bands of the gill, liver, muscle, blood, brain, and kidney of the normal fish were 3, 6, 2, 2, 2, and 2 respectively, and these numbers were the same as those exposed to copper. The relative mobilities of the esterase bands in the gill, liver, blood, and kidney of the exposed group were different from those of the control. 5. There was one hemoglobin band on the anode in the normal fish. It seems that the nobility of hemoglobin band of the fish exposed to copper was slightly faster than that of the normal fish. 6. The normal gill lamellae of the fish consisted of centrally located pillar cells and a number of mucus cells. When the fish were exposed to copper, the epithelial layer was divorced first, disintegrated, and then destroyed completely. 7. The liver of the normal fish had prominent central veins, cords of hepatic cells, and sinusoids. When the fish were exposed to copper, numerous droplets of fat appeared in the cells around the central vein of the liver. It is assumed that the fatty droplets were accumulated by the lesion due to fatty metamorphosis of the liver caused by copper. 8. There was no histological difference between the muscle of the normal fish and that of the fish exposed to copper. 9. In the normal fish, the tubules of the kidney were surrounded by hemopoetic tissues. However, the kidney tissue of the fish exposed to copper received some damage on the proximal tubules. Since the tubule cells were reduced in height, the lumens of the tubules were enlarged. Consequently many proximal tubules exhibited some pink-stained granular casts and various stages of degeneration.

  • PDF

Ethanol extract of Allium fistulosum inhibits development of non-alcoholic fatty liver disease

  • Hwang, Jin-Taek;Shin, Eun Ju;Chung, Min-Yu;Park, Jae Ho;Chung, Sangwon;Choi, Hyo-Kyoung
    • Nutrition Research and Practice
    • /
    • v.12 no.2
    • /
    • pp.110-117
    • /
    • 2018
  • BACKGROUND/OBJECTIVES: Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease and is closely associated with metabolic syndrome. In the present study, we observed the effect of ethanol extract of Allium fistulosum (EAF) on NAFLD and have suggested the possibility of using EAF as a natural product for application in the development of a treatment for NAFLD. MATERIALS/METHODS: The preventive effect on hepatic lipid accumulation was estimated by using an oleic acid (OA)-induced NAFLD model in vitro and a Western diet (high-fat high-sucrose; WD)-induced obese mouse model. Animals were divided into three groups (n = 7): normal diet group (ND), WD group, and WD plus 1% EAF group. RESULTS: EAF reduced OA-stimulated lipid accumulation in HepG2 cells in the absence of cellular cytotoxicity and significantly blocked transcriptional activation of sterol regulatory element-binding protein 1 and fatty acid synthase genes. Subsequently, we investigated these effects in vivo in mice fed either ND or WD in the presence or absence of EAF supplementation. In comparison to the ND controls, the WD-fed mice exhibited increases in body weight, liver weight, epididymal fat weight, and accumulation of fat in hepatocytes, and these effects were significantly attenuated by EAF supplementation. CONCLUSIONS: Allium fistulosum attenuates the development of NAFLD, and EAF elicits anti-lipogenic activity in liver. Therefore, EAF represents a promising candidate for use in the development of novel therapeutic drugs or drug combinations for the prevention and treatment of NAFLD.

Protective effects against alcoholic liver damage: potential of herbal juice (HJ), blend of Zingiber officinale Roscoe and Pueraria lobata Ohwi extracts

  • Young Yun Jung;You Yeon Choi;Woong Mo Yang;Kwang Seok Ahn
    • Journal of Convergence Korean Medicine
    • /
    • v.5 no.1
    • /
    • pp.45-54
    • /
    • 2023
  • Objectives : Alcohol-induced liver disease advances as to reactive oxygen species (ROS) and cellular lipid peroxidation increase. We examined the hepatoprotective effects of Zingiber officinale Roscoe rhizome extract (ZR), Pueraria lobata Ohwi flower extracts (PF), and a newly developed herbal juice (HJ), which was a combination of ZR and PF extracts, against ethanol-induced hepatotoxicity. Methods: The study utilized the human hepatoma cell line HepG2 cells to validate the hepatoprotective effect of HJ (50~200 ㎍/mL) against ethanol (EtOH, 700 mM)-induced liver damage. Results: HJ effectively reduced the protein expression of sterol regulatory element-binding transcription factor 1, adiponectin, and AMP-activated protein kinase in EtOH-induced HepG2 cells. The levels of ROS, total cholesterol, and triglycerides, which are the result of various synthesis and lipogenesis processes induced by EtOH in the liver, were reduced by HJ. Furthermore, the activities of alcohol dehydrogenase and aldehyde dehydrogenase, enzymes linked to alcohol degradation, were more effectively downregulated by HJ treatment compared to treatment with ZR and PF alone, all without causing cytotoxic effects. Conclusions: HJ protects the liver by inhibiting EtOH-induced lipogenesis, lowering ROS generation, and improving alcohol degradation, which is more effective than ZR and PF alone. Further, in vivo experiments can offer additional evidence regarding the effectiveness, safety, and underlying mechanism of action of HJ.

  • PDF

Robinetin Alleviates Metabolic Failure in Liver through Suppression of p300-CD38 Axis

  • Ji-Hye Song;Hyo-Jin Kim;Jangho Lee;Seung-Pyo Hong;Min-Yu Chung;Yu-Geun Lee;Jae Ho Park;Hyo-Kyoung Choi;Jin-Taek Hwang
    • Biomolecules & Therapeutics
    • /
    • v.32 no.2
    • /
    • pp.214-223
    • /
    • 2024
  • Metabolic abnormalities in the liver are closely associated with diverse metabolic diseases such as non-alcoholic fatty liver disease, type 2 diabetes, and obesity. The aim of this study was to evaluate the ameliorating effect of robinetin (RBN) on the significant pathogenic features of metabolic failure in the liver and to identify the underlying molecular mechanism. RBN significantly decreased triglyceride (TG) accumulation by downregulating lipogenesis-related transcription factors in AML-12 murine hepatocyte cell line. In addition, mice fed with Western diet (WD) containing 0.025% or 0.05% RBN showed reduced liver mass and lipid droplet size, as well as improved plasma insulin levels and homeostatic model assessment of insulin resistance (HOMA-IR) values. CD38 was identified as a target of RBN using the BioAssay database, and its expression was increased in OPA-treated AML-12 cells and liver tissues of WD-fed mice. Furthermore, RBN elicited these effects through its anti-histone acetyltransferase (HAT) activity. Computational simulation revealed that RBN can dock into the HAT domain pocket of p300, a histone acetyltransferase, which leads to the abrogation of its catalytic activity. Additionally, knock-down of p300 using siRNA reduced CD38 expression. The chromatin immunoprecipitation (ChIP) assay showed that p300 occupancy on the promoter region of CD38 was significantly decreased, and H3K9 acetylation levels were diminished in lipid-accumulated AML-12 cells treated with RBN. RBN improves the pathogenic features of metabolic failure by suppressing the p300-CD38 axis through its anti-HAT activity, which suggests that RBN can be used as a new phytoceutical candidate for preventing or improving this condition.

Toxoplasma gondii IST suppresses inflammatory and apoptotic responses by inhibiting STAT1-mediated signaling in IFN-γ/TNF-α-stimulated hepatocytes

  • Seung-Hwan Seo;Ji-Eun Lee;Do-Won Ham;Eun-Hee Shin
    • Parasites, Hosts and Diseases
    • /
    • v.62 no.1
    • /
    • pp.30-41
    • /
    • 2024
  • The dense granule protein of Toxoplasma gondii, inhibitor of signal transducer and activator of transcription 1 (IST) is an inhibitor of signal transducer and activator of transcription 1 (STAT1) transcriptional activity that binds to STAT1 and regulates the expression of inflammatory molecules in host cells. A sterile inflammatory liver injury in pathological acute liver failures occurs when excessive innate immune function, such as the massive release of IFN-γ and TNF-α, is activated without infection. In relation to inflammatory liver injury, we hypothesized that Toxoplasma gondii inhibitor of STAT1 transcription (TgIST) can inhibit the inflammatory response induced by activating the STAT1/IRF-1 mechanism in liver inflammation. This study used IFN-γ and TNF-α as inflammatory inducers at the cellular level of murine hepatocytes (Hepa-1c1c7) to determine whether TgIST inhibits the STAT1/IRF-1 axis. In stable cells transfected with TgIST, STAT1 expression decreased with a decrease in interferon regulatory factor (IRF)-1 levels. Furthermore, STAT1 inhibition of TgIST resulted in lower levels of NF-κB and COX2, as well as significantly lower levels of class II transactivator (CIITA), iNOS, and chemokines (CLXCL9/10/11). TgIST also significantly reduced the expression of hepatocyte proapoptotic markers (Caspase3/8/9, P53, and BAX), which are linked to sterile inflammatory liver injury. TgIST also reduced the expression of adhesion (ICAM-1 and VCAM-1) and infiltration markers of programmed death-ligand 1 (PD-L1) induced by hepatocyte and tissue damage. TgIST restored the cell apoptosis induced by IFN-γ/TNF-α stimulation. These results suggest that TgIST can inhibit STAT1-mediated inflammatory and apoptotic responses in hepatocytes stimulated with proinflammatory cytokines.

Endoplasmic Reticulum Stress Activates Hepatic Macrophages through PERK-hnRNPA1 Signaling

  • Ari Kwon;Yun Seok Kim;Jiyoon Kim;Ja Hyun Koo
    • Biomolecules & Therapeutics
    • /
    • v.32 no.3
    • /
    • pp.341-348
    • /
    • 2024
  • Endoplasmic reticulum (ER) stress plays a crucial role in liver diseases, affecting various types of hepatic cells. While studies have focused on the link between ER stress and hepatocytes as well as hepatic stellate cells (HSCs), the precise involvement of hepatic macrophages in ER stress-induced liver injury remains poorly understood. Here, we examined the effects of ER stress on hepatic macrophages and their role in liver injury. Acute ER stress led to the accumulation and activation of hepatic macrophages, which preceded hepatocyte apoptosis. Notably, macrophage depletion mitigated liver injury induced by ER stress, underscoring their detrimental role. Mechanistic studies revealed that ER stress stimulates macrophages predominantly via the PERK signaling pathway, regardless of its canonical substrate ATF4. hnRNPA1 has been identified as a crucial mediator of PERK-driven macrophage activation, as the overexpression of hnRNPA1 effectively reduced ER stress and suppressed pro-inflammatory activation. We observed that hnRNPA1 interacts with mRNAs that encode UPR-related proteins, indicating its role in the regulation of ER stress response in macrophages. These findings illuminate the cell type-specific responses to ER stress and the significance of hepatic macrophages in ER stress-induced liver injury. Collectively, the PERK-hnRNPA1 axis has been discovered as a molecular mechanism for macrophage activation, presenting prospective therapeutic targets for inflammatory hepatic diseases such as acute liver injury.

Immune-mediated Liver Injury in Hepatitis B Virus Infection

  • Oh, In Soo;Park, Su-Hyung
    • IMMUNE NETWORK
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2015
  • Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B.

Effect of Propolis on the Activity of Antioxidant Enzymes in Rat Liver Irradiated by X-ray

  • Lee, Ji-Hoon;Ji, Tae-Jeong;Seo, Eul-Won
    • Biomedical Science Letters
    • /
    • v.12 no.4
    • /
    • pp.427-433
    • /
    • 2006
  • We investigated the effect of propolis on the activity of antioxidant enzymes in rat liver exposed by X-ray irradiation. The dosage of propolis showed the effect of lowering the concentration of superoxide anion in irradiated rat liver, suggesting that propolis has a significant role to remove superoxide anion as an antioxidant and/or by activating the antioxidant enzyme. The activities of superoxide dismutase (SOD) and glutathione reductase (GR), disturbed by X-ray irradiation, were restored in 30 days to normal status in the group which dosed propolis before X-ray irradiation. Interestingly, catalase (CAT) and glutathione peroxidase (GPOX) activities were highly increased with feeding propolis to rat compared to untreated group, whereas glutathione s-transferase (GST) activity was little affected. Taken together, it suggests that the propolis has a protective role in the rat liver cells against X-ray irradiation by increasing and recovering the activities of antioxidant enzymes.

  • PDF

Optimization of Chitosan-Alginate Encapsulation Process Using Pig Hepatocytes or Development of Bioartificial Liver

  • LEE , JI-HYUN;LEE, DOO-HOON;SON, JEONG-HWA;PARK, JUNG-KEUG;KIM, SUNG-KOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.7-13
    • /
    • 2005
  • Chitosan-alginate capsules were formed by electrostatic interactions and exhibited an appropriate mechanical strength, permeability, and stability for the culture of hepatocytes. Pig hepatocytes were isolated and hepatocyte spheroids formed and immobilized in chitosan-alginate capsules. An encapsulation procedure of 3 min and spheroid formation period of 24 h were the optimum conditions for the best liver functions. Pig hepatocytes with a cell density of $6.0{\tomes}10^6$ cells/ml in the capsules were found to be most suitable for application in a bioartificial liver support system. The encapsulated pig hepatocyte spheroids exhibited stable ammonia removal and urea secretion rates in a bioreactor for 2 weeks. Accordingly, chitosan-alginate encapsulated hepatocyte spheroids in a packed-bed bioreactor would appear to have potential as a bioartificial liver.